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1. INTRODUCTION AND SUMMARY

One important problem in interferometer antenna

system design is the conflict between the need for wide base-

lines to measure angles accurately and the need for no angle

ambiguities. In this document, it is shown that the conflict

can be resolved by judicious placement of a few antennas in a

plane. A general mathematical theory is developed which

defines geometrical constraints dictated by measurement error

tolerances.

Section 2 develops the mathematical solution of

ambiguity locations for arbitrary antenna arrangements.

After introducing the concept of array ambiguity plot, it is

shown that there are exactly five distinct plot topologies:

a grid of equally spaced parallel lines, a single line, a

two-dimensional lattice of points, a one-dimensional lattice

of points, and no ambiguities.

In Section 3, the effects on plot topologies of

constraining the antennas to lie on a circle are examined.

It is shown that the single line topology is not achievable

and th6 other four are. The general regular polygon case is

solved.

Section 4 is devoted entirely to the two-dimensional

lattice topology, it being conjectured by the author that

such antenna arrays are generally superior when measurement

error tolerances are taken into account.

TWo important results are proved in Section 4.

The first is that if two triangular arrays have the same

ambiguity plot, then they enclose the same area. This area

is denoted by T(P), and is therefore an invariant of the plot P.

,,g , ,.1
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The second result of Section 4 has been termed the

fundamental area theorem. It states that a necessary and
/

sufficient condition that an antenna array in a plane have a

two-dimensional lattice topology for its array ambiguity I
plot is that the ratio of the areas of all pairs of triangles

formed by antenna elements is a rational number. In this

case, T(P) is the largest number which divides into the areas

of all triangles of the array with integer .quotients.

Section 5 extends Section 4 in several directions

with emphasis on the two-dimensional lattice topology. The

questions of antenna placement, angle processing, and measure- I
ment error tolerance are addressed. Several examples are

given as ilhstrations of the general theory. The theory for
T

one-dimensional arrays having a line grid topology is also

given, as it turns out to be a special case of the two-

dimensional theory.

The most important conclusion is that for a given

measurement tolerance and region within which one must place

antennas, the ambiguities can be made to move away exponen- 7

tially as the number of antennas increases, provided the

antennas are placed judiciously. A summary of the key

results needed in reaching this conclusion follows.

For arrays having a two-dimensional lattice ambigu-

ity plot, if source directions in the forward hemisphere

within a cone having its axis perpendicular to the antenna

plane can be found unambiguously, then

J~2
T(P) 51 2

12 sin p

where pis the cone half-angle and X is the wavelength. j

21
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A quantity T (units of cycles of phase) is intro-

duced, and is ca2.3d the sufficient phase difference tolerance.

Specifically, if the errors in phase at each antenna are all
1I

less than 1 T in absolute value, thereby implying that phase

difference errors are all less than T in absolute value,(P

then all phase differences can be resolved unambiguously

except for ambiguities of the entire array.

Another quantity, denoted by EV, is termed the

tolerance efficiency of the array. For more than three
antennas, it is defined by j

E ~[n-3 (n-2) x (area enclosed by antenna arraY)]
E= T(p)

where n is the number of antennas.

The major result of Section 5 is that E T 1.

This is proved for n = 4, 5, 6, and conjectured to be true

for n > 6. The significance of this inequality is that it

puts a bound on how small T(P) can be. Together with the

first inequality, which can be used to determine how small

T(P) must be, one can then estimate how many antennas will 4'
be needed for a given area and tolerance.

Although the determination of antenna locations is

presently somewhat of an art, the inequalities serve at

least two purposes. In some cases they can tell one that it

is a waste of time to consider fewer than a certain number of

antennas, and in other cases they can be used as measures of

goodness for any given array arrangement with a two-dimensional

lattice ambiguity plot.

Ic



~~THa JOWiNS "OfXime UNiVELtrIY

APPLIED PHYSICS LABORATORY
OLV,.EN[ SP*0NG. MAMAJINO .

2. ARRAY AMBIGUITY PLOTS AND THEIR TOPOLOGIES

[GEOMETRY NOTATION

Let i, J) k denote a right-handed triad of unit

vectors fixed in the array. i and j lie in the plane of the

antennas, and k is perpendicular to this plane. A unit vector

in the direction of a point radiating source is denoted by s,

and it is assumed that the source is sufficiently into the

far field of the array so that the lines joining each antenna

with the source may be considered parallel. The direction

~: cosines of the source direction are denoted by x, y. z so that

s = xT+ y1+ z . (1)

LI It is assumed that the source lies in the forward

hemisphere and. within a cone having half-angle p, so that

O rcos p z . (2)

I Since x 2 + y 2 + z2 = 1, one also has

0 :!r.Vx 2 + y2 :gsin p. (3)

A coordinate system has now been established in the

boresight plane, see Fig. 1, where there is a one-to-one

t} correspondence between source direction and points (xy)

lying within a circle having radius sin p.

Preceding page blank
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y-AXIS

101
x-AXIS

Fig. 1 COORDINATE SYSTEM

MEASURDONS FROM ONE AIENNA PAIR

For the present analysis, each antenna is assumed

to be located at a point in the antenna plane, and all
antennas receive the signal from the source with the same t

amplitude. The only difference between signals from antennas

lies in the phase difference arising from different path

lengths from the source to the antennas.

Consider two antennas (D and ( in the antenna

plane, see Fig. 2, and let d denote the vector with tail at

and head at ®.

6 II
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0 IS POSITIVE IN THIS FIGURE

L DIRECTION

d

1Q-
0P

I DIRECTION

FIg. 2 GEOMETRY FOR ANTENNA PAIR

If is inclined at an angle 9 relative to , then

=(d cos 8) + (d sinO) (4)

where d is the (scalar) distance between the antennas.

The two antennas and the directiou to the source

define a plane, depicted in Fig. 3.

I?
17 :'
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Fig. 3 PLANE FORMED BY TWO ANTENNAS AND SOURCE DIRECTION

The path length difference of the two signal routes

is AP. Clearly,

AP = d I, (5)

where AP is negative if the distance from the source to

antenna @ is greater than the corresponding distance to

antenna Q. j
From Eqs. (1) and (4), then

P= d(x cos e + y sin 0). (6) 1
If the signal in antenna 1 is denoted by 3

=V~'cos (wt+ ), (7) £
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then the signal in antenna ® will be

® V Cos~w " +L + (8

where c is the speed of light.

If f and X are the frequency and wavelength of the

signals, respectively, then

W A 2:gf AP =g Ap.(

if q) denotes the phase difference between the two

antennas in units of cycles, then

AP = (x cos e+ ysin e). (10)

The only information about source direction in

these two signals is embodied in sin (2n l') and cos (21t),

which can be extracted from S and S @ This means that
if two distinct source directions, whose maps onto the

coordinate system of Fig. 1 both lie within the circle,

yield the same values of sin (2nq') and cos (2itg'), then

there is no way of telling them apart without additional

information. No signal processing tricks based on these two

signals alone can possibly alter this conclusion.

Entirely equivalent to the knowledge of sin (27((p')

and cos (2tp') is the knowledge of q except for some additive

integer.

To be more precise, if (x,y) denotes the true

source projection onto the coordinate system of Fig. 1, and

if (x',y') is some other point within the circle such that

x cos e + y'sin = n + x cos 8 + y sin 8 (11)
d N

9
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where n is an integer, then one cannot tell whether the source

coordinates are x',y') or (xy) or maybe something else.

AMBIGUITY PLOTS

It is instructive to examine the geometrical signif-

icance of Eq. (11) by plotting the locus of points (x',y') for

fixed (x,y). Equation (1) is the equation of parallel lines,

all perpendicular to d, each separated from another by a 11
distance of a multiple of 1, and one of them passes through

(x,y). Only those portions of the lines within the circle

contribute to the problem. This is depicted in Fig. I. P

)Vd j DIRECTION I

I DIRECTION i

Fig. 4 AMBIGUITY PLOT FOR ONE ANTENNA PAIR

Several things are of interest about ambiguity

plots. First, one can see from Fig. 4 that ambiguities are

unavoidable with two antennas. Second, ambiguities can be

10

/
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confined to a single line for all sources within the cone of

interest if and only if 1 is greater than the diameter of

the circle, that is, if

.> 2 sin. 2)d

Third, one can observe that, except for the circle,
the ambiguities translate with (x,y). This property holds

for ambiguity plots in general, so that one can plot the

' "ambiguities as if the source coordinates were (0,0) on one

piece of graph paper, draw a circle on another, put one

piece of paper atop the other, and slide it around to pro-

duce the equivalent of Fig. 4.

AMBIGUITY PLOT FOR THREE ANTENNAS APRANGED IN AN EQUILATERAL
TRIANGLE

This last comment will be illustrated for the equi-

I lateral triangle case. Figure 5 shows the antenna geometry.

, f
d

i 1 DIRECTION

600 60

I DIRECTIONI3 F3* Vd - NI
i Fig. 5 EQUILATERAL TRIANGLE CASE

1 11
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Let 91 denote the phase difference between antennasan@,ad% the pase dfferece. between atennas @

and (53. If two distinct source directions produce the same

values of qp* and qp except for additive integers in each
case, then (except for the circle restriction) they are

relatively ambiguous. It does not help to consider the phase

difference between antennas (D and I as no new information

has been added. This is so because the sum of the phase

differences around the clock is zero, or what is the same
thing, the final phase difference between Q and Q is the

negative of the sum of the other two. This implies that if

two source directions yield the same values of " and I

except for additive integers, then they will yield the same

value of the phase difference between antennas (D and
except for an additive integer.

The ambiguity plot for the equilateral triangle

case is determined as follows: assume the source coordinates

are (0,0) in the x,y plane. Draw the grid lines for ambigu-

ities associated with antennas ( and @ as discussed

previously. Next draw the grid lines for ambiguities asso-

ciated with antennas ® and ©. The lattice points

determined by the intersections of these two families of

lines make up the ambiguity plot for the equilateral triangle

case. The lattice points form a hexagonal pattern, as shown

in Fig. 6.

By sliding a circle around on top of Fig. 6, it can 13
be seen by inspection that there will be no ambiguities for

any source within the cone of interest if and only if the

diameter of the circle is less than d that is, if and only

if Eq. (12) holds.

12 I
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Xd

j DIRECTION

i DIRECTION

Fig.6 HEXAGONAL AMBIGUITY PATTERN FOR EQUILATERAL TRIANGLE 
CASE.

I

Suppose there are m+1 antennas (m i) arranged in,'

an arbitrary fashion on the antenna plane. The first step

in determining ambiguities is to order them in some arbitrary

but fixed way, so that one can refer to the antennas by

number-: , ,., .One can then let q)',", m

II

denote the unambiguous phase differences between @ and

... and ,respectively.

I The second step is to draw the m families of grid .

lines associated with antenna pairs @ and ,..
~~and mr+1) respectively, assuming the target coordinates to

be (0.0). A point other than (0,0) which lies on one of "

13
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the lines for each of the m families will be called an array

ambiguity, and the plot of all such points will be called
the array ambiguity plot.

Except for the geometrical restrictions having to B
do with the cone of directions of interest, which can be

handled by sliding a circle around on the plot (as discussed

previously), the array ambiguity plot has the remarkable

property that it is independent of the ordering of the

antennas. This is easily seen as the signal from a source

in any of these directions arrives at all m+l antennas in

phase. Obviously, there is no way of distinguishing between

two such directions without more information. No signal

processing tricks will help. The general case where the

target is not at (0,0) has an array ambiguity plot which is

a translation of the plot for the (0,0) case, as discussed

previously, so the conclusion that the ordering of the

antenna elements is immaterial is still valid.

ARTIFICIAL AMBIGUITIES AND THE DIAMOND ARRANGEMENT

By not using all of the information present in a

given antenna array, it is possible to introduce ambiguities

which are not array ambiguities, herein termed artificial

ambiguities. The converse is of course not possible; that

is, there is no way to get rid of an array ambiguity without

additional information.

A classic example of this is the commonly used B
diamond antenna array depicted in Fig. 7.

14
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0. 0

d j DIRECTION

(~) 0 - __0 4

I DIRECTION 3
Fig. 7 DIAMOND ANTENNA ARRAY

The array ambiguity plot for this case is the set '1
of circled points in Fig. 8.

o * 0 * j DIRECTION

SOURCE COORDINATES

I DIRECTION -

Fig. 8 ARRAY AMBIGUITY PLOT FOR DIAMOND CASE

15
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In some systems, the phase difference between

and is used for the x-coordinate and the phase difference

between @ and ( is used for the y-coordinate. No other

antenna pairs are used. In this case the ambiguity plot

includes the uncircled points as well as the circled points.

The uncircled points (except for (0,0)) are the artificial

ambiguities for this processing using a diamond antenna

array. One can see by inspection that the nearest ambiguity

can be pushed out a factor of W by using all of the informa- I
tion present in the array.

MATHEMATICAL SOLUTION FOR ARRAY AMBIGUITIES WHEN ANTENNAS
LIE ON A LINE

As before, suppose there are m+l antennas (m;l),

ordered in an arbitrary way. Let , . be as before,

and in addition, let dk and ek denote the distance between

antennas ® and k and the angle that the vector from
antenna ® to antenna makes with the positive axis.,
respectively, for k = 1, ... , m. As before, the true source

coordinates are taken to be (0,0). fl
In general, it follows from Eq. (10) and the dis-

cussion following it that a point (x,y) other than (0,0) is

an array ambiguity if and only if the system of m equations

Xnk
(x cos ek + y sin ek ) -d k = i1 2) , m (13)

has a solution in integers for nk, k = I, 2, ... , m. 13
In the present case, all of the 0 k'S differ from

each other by 0* or 1800, so that solving the system of

equations is equivalent to finding integer solutions* for nk

*The nts in Eq. (14) may differ in sign from the n's in

Eq. (13). 16
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in the set of equations

Xi Xn Xn
(x cos 0 + y sin 01). = 2 " (4)

3.1 2 dm 'u
It is clear that if the ratio of any two of the

d's is an irrational number, then the only solutions for

(x,y) are given by

x cos 81 + y sin 01 = 0 (15)

which is the equation of a single line passing through (0,0) j
and perpendicular to the line containing the antennas.

If the ratios of all possible pairs of d's are

rational numbers, then let

d, ak

- =- k = 1, 2, ... , m (16)dk -',•

ak
where ak and bk are integers) and b is in lowest terms.

(Obviously, ab =b ite1.s) k

Also, let L = the least common multiple of a,, a ,

... , am . Then the solution to Eq. (14) is given by

n = nbk _ k =1,2,..., m (17)nk  k

and

xcos 0 1 +ysi n i d (18)

where n is any integer.

The array ambiguity plot is therefore identical

to that for a single pair of antennas separated by a distance .

17
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da

d/, where d'= and the grid of lines is therefore deter-

mined by

x cos 03 + y sin el . (19) 

where n is any integer.

The irrational fraction case whose solution is

given by Eq. (15) can be included in this case by the

artifice of setting d' =oo in Eq. (19).

MAT M4ATICAL SOLUTION FOR ARRAY AMBIGUITIES, GENERAL CASE

Now consider a general planar array of m+l antennas,

and without loss of generality assume the true source coordi-

nates to be (0,0). Assume some ordering of the antennas, and

let k, dk, ekbe defined as before, k = 1, 2, ..., m.

The array ambiguity plot is then determined by

solving the system of Eqs. (13). Next, split the equations

into groups of equations, where two equations belong to the

same group if and only if the two ek's associated with the

two equations are the same or differ by 180--.

The analysis of the previous saction then shows

that each group may be replaced by a single equation.

The system of equations to be solved is therefore

the system

xcos 6k + y sin e' k k = 1, 2, ... , p (20)
k k (20

where no tro el's are equal or differ by 1800, p m, and

some of the dO's may be o.

In order, to ease the typist's task in the following

development, the primes will be removed from Eq. (20), so the

18
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reader should bear in mind that the following unprimed

variables are not necessarily the same as in the previous

definitions.

[ The system of equations to be solved is thus
X111

x cos k + y sin k = -n, k = l, 2, ..., p, (21)

where no two kS are equal or differ by 1800, p :9 m, and
some of the dkIs may be o .

First, if there is just one equation, the antennas

all lie on a line, and this case has been solved already.

Second, suppose there are just two equations.

Since e and 02 are not equal nor differ by 180, one can

solve the equations for x and y, giving

n(2-1) 82 sin 03] (22)x Xcsc [d1eI  sin O- dn

I d
y =Xcsc (62-01) [-. cos 02+ 2 cos 81]. (23)

If both di and d2 are 00, then x = y =0 is the

only solution, and there are no array ambiguities. If just

one is 00, say d.= 00, then

x = X cc (02-01) -n sin e (24)

y = X csc (2-081) cos 0 (25)

which represents a set of lattice points all of which lie

on the line x cos 0 + y sin 01= 0. The case where d1 and

3 d are both oo can be achieved with five antennas, and the

case where just d1 = o can be achieved with four antennas.

19
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The cases when neither d nor d2 are infinity

include all triangular array cases. From Eqs. (22) and (23),

it can be seen that there always exists a lattice of array

ambiguities which covers the whole (x,y) plane as n1 and n2  I
range through all possible integers. This was: to be expected

from the geometrical nature of the array ambiguity plot,

since the intersection of two sets of non-parallel grid

lines must intersect in a lattice of points.

Next, suppose there are at least three equations.

First, consider the case where none of the dk 'S are infinity.

The first two equations are linearly equivalent

to Eq. (22) and Eq. (23). If one multiples the first equa-

tion of Eq. (21) by sin (e3-02), the second by sin (01-e3),

the third by sin (02-0.), and adds, one obtains the equation

(after dividing through by X)

n n n
sin (93-e2) + n sin (8-e) + 2sin (82- ) = o. (26)

Note that x and y do not appear in Eq. (26). Since the

coefficient of n3 is not zero, Eqs. (22), (23), (26) give

x, y, n3 as functions of ni and n2 . Similarly, using the

second, third, and fourth equations, one can solve for n4

in terms of %. and n2 (assuming there are at least four

equations). Therefore, a linearly equivalent set of equa- .4

tions to Eq. (21) is given by Eqs. (22), (23), and the system

of equations [l

n k ) k 2

+ nk+2 sin (= 0 , = , ... p-2. (27)

20
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In the general case where no dk is DO and there are

I at least three equations, if one first finds all integer

solutions for the nk's of the system of Eqs. (27), and then

substitutes al1 possible values of n. and n2 resulting from

that solution into Eqs. (22) and (23), one has the coordi-

nates of all points (except for (0,0) which is always a
_solution) of the array ambiguity plot. The above procedure

utilizing Eqs. (22), (23), (27) also produces the array

ambiguity plot if some of the dk's are 00, as can be seen by

observing that Eqs. (22), (23), (27) are linearly equivalent

- to Eq. (21) if one takes the variables in question to be
x, y, p "." instead of x, y, n1 , ... , n . By appropri-

d: ' dp p
ate linear combinations of Eqs. (22), (23), and the equations

of Eq. (27), one can derive Eq. (21) regardless of whether or
nk

I not some of the 's are zero. Of course, if more than onedk

dk were 00, we know from the two equation case that there are

g no array ambiguities, and one need proceed no further. If

only one dk is o0, then we know that all array ambiguities

are confined to a line.

The general array ambiguity plot problem has now

been completely solved mathematically. Unfortunately, most

general mathematical solutions do not convey much insight into

interesting cases. Before concluding Section 2, some special

situations will therefore be examined, and the general topo-

logical nature of all possible plots will be derived.

First, it has been shown that the array ambiguity

plot for a given antenna a.ray, determined by intersections

of grid lines of successive pairs of antennas, does not

depend on the ordering of the antennas. The number of equa-

tions in Eq. (21), however, may depend on the ordering, and

so may the existence of infinity values for the dk's. It is

21
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of course assured that whatever set of equations one uses,

the resulting solutibns for x and y must be identical. ]

To illustrate the above phenomena, consider the

arrangement of antennas in Fig. 9.

SIDIRECTION l

dI
I DIRECTION

Fig. 9 AN ARRAY

In this figure, suppose that the ratio of d, to d3 is irra-

tional. In the ordering given in the figure, there are just

two equations in Eq. (21), namely x = 0 and y = n -, so that B i
the ambiguity plot obviously consists of lattice points con-
fined to the y-axis and separated by multiples of L.

d2
On the other hand, if the antennas were ordered

, ®, ®,@ ®, there are three equations, namely

x Cos 0+ ysin 0=-n . (28)

Xn2
x = -K3 (29)

II xn3  1
-y = -. (30)

22
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Since there are three equations in this case, the equivalent

set of Eqs. (22), (23), (27) is

Xn (31)

I d3
nI a, n

d + -sin . (33) j

From the law of sines,I
sin e 1 Cos 0 (34)

so that sin 0 and cos e may be removed from Eq. (33), and

3 Eq. (33) is replaced by

n n1 2 L, - -1 n o. .(35)
a4 + 4 \(d 3  d 4

Multiplying by d4 , there results (6

dI 4-ni + n 2 + n 3 = nm 2 (36)
3°

Since - is irrational, it follows that n2  0 and n, can be
d3

any integer (taking n3 = -n3.).

Substituting n2 = 0 in Eqs. (31) and (32), one has

x=0and y =Xcsc e and fromEq. (34), y = n 1  , the

same result as before.

3 In addition to illustrating that the equations

depend on the antenna ordering, this example also shows that

some orderings simplify the analysis compared to others.

23
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We will conclude Section 2 by summarizing some

observations about array ambiguity plots which follow from

the preceding discussions when the number of antennas is 2

or 3; or more if they all lie on a line. The n =4 and

n > 4 case will then be treated.

mWO ANTENNA SMEARY

For two antennas, the array ambiguity plot is

neighbor by a distance

THREE ANTENNA SUARY

If the antennas do not lie on a line, then the

array ambiguity plot consists of lattice points extending

throughout the ( ,y) plane, and are formed by the inter-

section of two sets of grid lines, each set consisting of

equally spaced parallel lines, but no line of the first set

is parallel to any line of the second set.

If the antennas lie on a line, then the ambiguity

plot consists of either a single straight line or a grid of

equally spaced parallel lines. In Fig. 10, if is an

irrational number, the former case results, otherwise the

latter. The orientation of this array with respect to the

coordinate axes has no bearing on this conclusion.

I-" d, l d2

Fig. 10 THREE ANTENNAS ON A LINE
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n A.NTENNAS ON A LTE SUMMARY, n 3

The conclusion here is the same as for the n = 3 4
case in that the array ambiguity plot consists of either a

single straight line or a grid of equally spaced parallel

lines. If one lists the distances between all possible pairs

of antennas, and can find two such distances whose ratio is

Ian irrational number, the former case results, otherwise the

latter.

FOUR ANTENNAS

If all four antennas lie on a line, the result is

given by the preceding paragraph.

If not, then there always exists an ordering of the

antennas such that no pair of O's selected from 01, e2, es

are equal or differ by 1800. To see this, suppose first that

only three antennas lie on a line, and suppose that ©, 3,
I @(D are these antennas. Then the ordering (, ®, G, 0

will have the desired property. If no three antennas lie on

- a line, then label the antennas 61 1 , ), arbitrarily.

Neither (3) nor lie on the line joining ( and ®. If

the line joining ( and ( is parallel to the line joining

I< ( ) and ®, then at least one of the orderings (, ®, ®,
or J, Q, ®, 3 will have the desired property. If

the line joining ) and @ is not parallel to the line join-

ing ® and®, then the ordering U, ®, @, 0 has the

desired property. This exhausts all cases.

So suppose there are four antennas not all on a

I ine, and let them be ordered so that no pair of O's selected

from 0e, 2, 03 are equal or differ by 1800. For this order-

I ing, the array ambiguity equations are given by Eqs. (22),

(23) and (26), where dl, d2, d. are all finite. The nature

1 25
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of the integer solutions to Eq. (26) will obviously depend

on the rationality of the ratios of the coefficients of '

n1, n.. n3 in Eq. (26). So let

d3 sin (e-e%)

dX sin (e2701) (37)

d sin (e3-e)
-2 = d sin (e 2-8) " (38)

Case 1: There is no linear combination of c1 and c2 which

is rational when the coefficients are rational and at least

one coefficient does not vanish. (Example: ci= 4 c2=4)

In this case the only solutions to Eq. (26) are

n, = n2 = ns = 0, as is easily seen by dividing Eq. (26)sin (ea-ex) asen
by d3  , the result being

c2 n1 + cn, + n3 = 0. (39)

. . Since the only solution for the nts is n1 =n 2 =n 3 =0,
it follows from Eqs. (22) and (23) that there are no array

ambiguities. Note that in Case 1 both c. and ca2 must be

irrational, although this is not a sufficient condition for

Case i to apply.

Case 2: There exists a non-zero solution to Eq. (39), and

not both c. and c2 are rational. (Example: -c1 = C2 = V)

Let (n1,n,n3) denote a non-zero solution. It may

be assumed that n, n2 , n3 have no factor in common, for one

can always divide Eq. (39) by the greatest common factor of

n1 , n , n3 .

26
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If (n',n',n') is another non-zero solution, then 4
nn-nn 2 must vanish, for otherwise the equations

c2nl + cln2 = n 3F!
c2n~ +cln;:n ;

fiwould have rational solutions for both c and c., Therefore,

(nLn 2) is proportional to (nl,n*) and it then follows that

(n',nz,n') is proportional to (n1 ,n,n 3 ).

Since n,nn 3 have no factor in common, there
exists an integer n such that n' = nn1 , n2 = nn , n3  nn 3 .

From Eqs. (22) and (23), it then follows t1hat the

array ambiguity plot consists of lattice points confined to

the line ,

n I  n 2  3 .1 y n , n
x2 + cos e sin 2 ] (40)

where the distance between neighboring lattice points is

X csc (e-81) () ) 2 (C) (2 cos( )

Case 3: Both c 3 and cz, are rational.
e t 3 sand c 2 b both in lowest terms, and

3. b. . 2 b2;
let L be the least common multiple of b1 and b2 . Multiplying

Eq. (39) by L results in

I1n. 
+ I 2n2 + Ln3 = 0 (41)

where 1,, 12, L are integers having no factor in common.

S2L37
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Lei g be the greatest common factor of 12 and L.

Then clearly g must divide n . From the theory of congru-

ences, Eq. (41) is then equivalent to

9 nm -1 7 " (42)

Since and L are relatively prme, Eq. (42) is

g g
equivalent to

where p is some fixed integer.

The solutions of Eq. (41) for n1 and n 2 are there-

fore given by

n..= ag (144) A
n 2 = pa + b (45)

where a and b are any integers.

From Eq. (21), the array ambiguity points are given 8
by the solutions to (6

x cos e, + y sin e. dig (46)

anddl 3

x Cos e2 + y sin 62 = pa+bf. (47)

If one multiplies Eq. (46) by g-, and subtracts

from Eq. (47), one obtains

r pdl 1 [Pd 1
x co82-gCos e~+ 1 sin - sin 8 2-b.

(48)
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Note that Eqs. (46) and (48), which also define

the array ambiguity plot, are each the equation of a family

of equidistant parallel lines as a and b range over all

possible integers. There therefore exists a placement of

7 5 three antennas which produces exactly the same array ambiguity

plot as Case 3 for four antennas, and the array ambiguity plot,

is the same as that for a triangle.

FOUR ANTEnNA SUMMARY

All of the types of array ambiguity plots obtain-

able with three antennas, namely a single line, a grid of

lines, or a two-dimensional grid of lattice points formed by

intersections of two non-parallel families of a grid of

lines, are obtainable with four antennas. In addition there

are exactly two more possible types of plots. One is a set

of equidistant lattice points on a single line, and the

other is no array ambiguities at all. Figure 9 is an example

of the former.

The array in Fig. 11 is an example of the latter.

Y0

I 600

Fig. 11 FOUR ANTENNA CASE WITH NO ARRAY AMBIGUITIES
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From Eqs.(37) an(38), c=l -2andc = which

falls under Case 1 for four antennas.

n > 4 m AS I
It will now be shown that the five t pes of plots

possible for n = 4 are also possible for n > 41', and there

are no others.,

The proof will be by induction, that is, it is

assumed that the statement is true for some n i 4, and one

shows that it is true for n + 1. 1
Begin with some arbitrary arrangement of n + I

antennas, and let them be ordered as before. The first n

antennas in this ordering constitute an n antenna case which

by the induction hypothesis has an array ambiguity plot which

is one of five types. The array ambiguity plbt for the n + I LV
antennas is the intersection of the ambiguity plot for the

first n antennas with the grid of parallel lines associated

with the n and (n+l)th antennas.

Case 1: The first n antennas have no array ambiguities.

In this case, the n+ 1 antennas clearly have no

array ambiguities.

Case 2: The array ambiguity plot for the first n antennas $.
is a two-dimensional array of lattice points formed by the

intersection of two sets of parallel grid lines.

In this case, one can replace the n antennas by

three which have the same array ambiguity plot. Attach the

th
(n+l) antenna to the array of three in such a wav that the

th
vector joining one of the three to the (n+l) has the same

direction and length as that joining the 
nth and (n+l)

th

in the original array.
30
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The new array of four antennas has the same plot as

the original n +1, and since the plot for four antennas must

<_ be one of the five possibilities, so is the plot for the

n +1 antennas.

Conversely, start with an array of n antennas all

lying on a line, and equally spaced. The plot is a grid ofIT I th
parallel lines. Adding an (n+l) antenna anywhere off the

line will produce a plot which is a two-dimensional array of

i. lattice points. Such an array is therefore achievable with

n+ 1 antennas.

Case 3: The array ambiguity plot for the first n antennas

SI is a line of equally spaced lattice points.

If the grid of lines associated with the nth and
|th

(n+l) antennas is parallel to the above line, then one of

the lines lies along it, and the intersection is the same

I plot.

If not, then the intersection of the line with the

grid lines defines another set of lattice points on the line.

If the two sets of lattice points have any point in common

f I other than the origin, then the distances from the origin to

a pair, one from each set, have a rational quotient and the

intersection will be a set of equally spaced lattice points

on the original line. If the two sets have no point in

common except the origin, then there are no array ambiguities.

To show that a line of equally spaced lattice points

is an achievable plot for n+l antennas, put n of them on a

line with the ratio of at least one pair of distances equal
thto an irrational number, and put the (n+l) antenna off

the line.

32.
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Case 4: The array ambiguity plot for the first n antennas is

a single line. I
The n antennas may be replaced by three antennas on

" line having the same array ambiguity plot as the n antennas.

Attach the (n+l) anterna as was done in Case 2, and the plot

for the resulting four antennas is the same as for the n+1 !1

antennas. One of the five plot types must result.

To achieve a single line plot with n +1 antennas,

place all n +1 antennas on a line, with the ratio of at

least one pair of distances an irrational number.

Case 5: The array ambiguity plot for the first n antennas

is a grid of parallel lines.

The n antennas may be replaced by three antennas

equally spaced on a line, and one proceeds as before.

An example of n-l antennas with a grid of lines

for its array ambiguity plot is obtained by placing them all

on a line with equal spacing.

i3
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I
3. PLOT TOPOLOGIES WHEN THE ANTENNAS ARE

CONSTRAI-) TO LIE ON A CIRCLE

POSSIBLE TYPES OF ARRAY AMBIGUITY PICTS

The circle assumption is irrelevant for the two

antenna case, and the result is the same as in Section 2;

I namely, the array ambiguity plot consists of a grid of equally

spaced parallel lines.

I For three antennas, the circle assumption implies :1
that they cannot lie on a line, so it follows from Section 2

that there is just one type of array ambiguity plot, a two-

I dimensional array of lattice points formed by the inter-

section of two non-parallel sets of equidistant parallel

I lines.

For four antennas, it wi).l be shown that the circle

'I assumption implies that there are exactly three types of

plots, the two-dimensional lattice as in the three antenna

I case., a set of equidistant lattice points confined to a single

line, and no array ambiguities at all. In Section 2, it is

shown that these are the only possibilities in general unless

the four antennas lie on a line, which is ruled out by the

circle assumption. It remains only to show that each of the

three types is realizable by some placement of the four
antennas around the circle.

The diamond array, discussed in Section 2, is an

example of the two-dimensional lattice. The array in Fig. 123
is an example of a set of equidistant lattice points confined

to a single line. The analysis associated with the array in

Fig.12, which is a trapezoid inscribed in a circle, is exactly

the same as that for the array of Fig. 9. It is clear that

3 A



P.

THE me44 HOPCING U14IvKnITV
APPLIED PHYSICS LABORATORY

.Lveol BaIN. MAmn.Ato

3can be made irrational if one fixes the circle and antennas

© and ®, md slides (3) and (Dup or down the circle, l
maintaining the line Joining 03) aid ® parallel to the line

Joining (DJ and ®

3i

d31d1 IS IRRATIONAL B
Fig.2 ARAY HOS AMBGUIY PLT I A LTTIE OFPOITS OLIN

Finally, consider the array in Fig. 13.

0U

0 I IRECTION 1

i DIRECTION

Fig. 13 AN ASYMMETRICAL ARRAY
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For the ordering (M, i)- ®, and letting r°

be the radius of the circle, one has

d d 2 = r J2 (49)

3 = 2r sing (50)

0, =0 (51)

.2= 90 (52)

3 =135 + t. (53)

From Eqs. (37) and (38),

c[ 1 (1 -cos e -sin e) (54)

2  2 g (1- cos 0+ sin e). (55)

Choose 0, for example, such that cos e = and

sin e = A1. There will then be no linear combination of c.

and c2 with non-zero rational coefficients which is rational.

Section 2 shows that there are no array ambiguities in this

case.

All three types of arrays are therefore achievable

with four antennas confined to a circle.

For five or more antennas, it follows from Section 2,

Ijust as in the four antenna case, that the line grid and
single line topology are ruled out since the antennas cannot

lie on a line. The remaining three candidate topologies can

be achieved for any given number of antennas larger than four

arranged on a circle. The proof of this will be given after

development of a special case which follows next.
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DEFINITION OF CIRCULAR ARRAYS WITH EQUAL CET ANGLES

Figure 14 depicts the definition of this class of

antenna arrays.

RIj

' ~ ~ DIRECTION

SDIRECTION

Fig. 14 CIRCULAR ARRAYS WITH EOUAL CENTRAL ANGLES

The antennas are ordered as in Fig. 14. For refer-

ence to the !!, J coordinate system, the vector from © to ©0
is arbitrarily chosen to be in the positive T direction.

In the notation of Section 2, l

= (k-1)Ae (56)

for the vector joining antennas k and k+ 1, k k 1, and

dk 2r sin e (

for all k, where r is the radius of the circle.

If AG, expressed in radians, is equal to 2jr 2, where

Pis a fraction in lowest terms, then eventually the sequence

will result in an antenna which lies on a previous one, and
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the array is the same as a regular polygon with q sides,

repetition occurring thereafter. If L is an irrational

number, eventually every point on the circle will be approached

arbitrarily closely.

In either case, one may wish to stop the sequence

at some point, say after h antennas. If A9 = 21 2, obviouslyI ,he array ambiguity pJot does not depend on h if h k q.

It will be shown that, if the number of distinct

antennas exceeds four, then the array ambiguity plot is

either a two-dimensional lattice or there are no array ambi-

guities, and either case can occur for any such number of

antennas. For four antennas, the plot is either a one- or

two-dimensional lattice, and either case can occur.

EQUATIONS FOR ARRAY AMBIGUITY PLOTS FOR CIRCULAR ARRAYS WITH
EQUAL CENTRAL ANGLES I

Unless AG is a multiple of A, which are the trivial

cases of one or two antennas, it follows from Section 2 that

the points (x,y) of the array ambiguity plot for h >3 are

given by (referring to Eqs. (22), (23), and (27))

.~ (58)

xcosAe+y sinA8=ne - (59)

nk sin A- nk+i sin 2AG + n k+ sin Ae =0, (60)

I :s k -; h-3

where Eq. (27) has been multiplied by d, the common value of

all the dk Is.

7I 7
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If h=3, then the solution to Eqs. (58) and (59)
for arbitrary integers n,, n2 yields the array ambiguityplot. This case has been thoroughly investigated previously,

so henceforth it will be assumed that h> 3. ii
Dividing each equation of the system Eq. (60) by

sin Ae, there results

nk -2nk 1 cos 48 + n+ 2 1= O, i ks h-3. (61)

So for h>3, the array ambiguity plot is determined

by all solutions for (xy) of Eqs. (58) and (59), where

n,, n2, ... , nh.l are any integer solutions of the system of

Eq. (60).

ARRAY AMBIGUITY PLOT WHEN cos 40 IS IRRATIONAL g
If there are just four antennas, then Eq. (61) is

just one equation, the solution of which is

n=0 (62)3
n3 = -n1 . (63)

So n. must be zero and n1 can be any integer. From

Eq3. (58) and (59), the array ambiguity plot is a one-dimen-

sional set of lattice points confined to the line

xcosAe+y sinA = 0. (64)

If there are five antennas, then Eq. (61) is a

system of two equations, and in addition to Eqs. (62) and (63), 

one has

r3 = o6

nj = -n.. (66)
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E.uations (62), (63), (65), (66) imply n. = -

j n3 = n4 = 0, so that for five antennas there are no array

ambiguities.

I For more than five antennas, the conclusion is

obviously the same as for five, as adding antennas cannot

result in adding array ambiguities.

THE REGULAI PETAGON

In this case, Ae T rad. = 72", and cos - ) 

an irrational number. Therefore the regular pentagon array

has no array ambiguities.

Figure 15 depicts this case. In Fig. 15, the 1or

x axis is horizontal, and the j or y axis is vertical. The

dots represent the array ambiguity plot for antennas Q, ®,
I 0. The line grid associated with antennas (D and ® has

been drawn, as well as the line grid associated with antennas

and O" The symbol A denotes the array ambiguity points

for antennas ), @, , ®, a one-dimensional lattice,
I and the symbol A those for , , , , another one-

dimensional lattice. Note that the symbols A lie on a line,

the symbols A lie on another line, and the two sets of lattice

points have only the origin (the assumed true source coordi-

nates) in common.

ARRAY AMBIGUITIES WHEN 2 cos AO IS AN INTEGER

In this case Eqs. (61) allow any integer values

whatsoever for n1 and n2 , so that the array ambiguity plot

I is a two-dimensional lattice given by the intersection of the 4
two sets of grid lines defined by Eqs. (58) and (59).

S39 A
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Assuming h> 3, there are exactly two possibilities

for this case, namely cos &G = 0 or 1, corresponding to a

square or a regular hexagon, respectively.

The regular polygon cases for 3, 4, 5, or 6 sides

have nov been completely solved.

ARRA AYMIUTITIES WHEN cos 48 IS RATIONAL BUT 2 cos AF IS
NOT AN INTEGER

Let 2 cos A=a, where a and b are integers, is

in lowest terms, and b is not unity. The system of Eqs. (61)
can be written for h> 3 as *

b(nk+ nk~) - anl,+0, If k9h-3. (67)

Case 1: h is odd. (h>3)

In this case the number of equations in Eq. (67) is

h- 3, which is even. Instead of using Eqs. (58) and (59),

we shall use

! x Cos h -3 A + y sin h-3 & =9 (68)

x Cos[ A9] + y.sin nh+3* (69)

Equations (67), (68), (69) constitute an equivalent

set of equations which define the array ambiguity plot.
It will be shown that the array ambiguity plot is

determined by Eqs. (68) and (69) where nh and nh + .are

arbitrary multiples of b-1- . Thus the array ambiguity plot

i 41
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is a two-dimensional lattice, If one compares this lattice
with that for h= 3, one sees that the ambitities have been

moved away from the origin by a factor of b .

For proof, Eqs. (67) are written as follows:

b(n,+ n3) - n (70) f
b(n2+n4) - a3 = 0 (71) 1

h-32 equations .

b(% - + nh " anh S---- =o 0(72)

LI

b(nh 3 + nh+)-anh+. =0 (4

h-3
equations •

b (-4 +nh- 2  ah-3 = 0 (76) U
b(nh.3 + nh.) anh.- = 0 (77)

First it wiill be shown that nh1and n- must be Ib-3

clearly imply
multiples of bT. Equations (73) and1 74) cieT iml

that both nh + and are divisible by b. If there is a

42 I-F" "--
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solution in which the two n's are not zero, then the:e is

- some largest power of b which divides them both, and one may

write

n b = abk (78)

"2-
and,-

ann. = p1bk (9

where at least one of al and P, is not divisible by b. If

a, is not divisible by b, one works backward to the first

I equation, otherwise one works forward to the last. Without

loss of generality, suppose a, is not divisible by b.

I Solve Eq. (73) for nh.3, and it follows that
-,I-

In h- = a 2 bk 1  (80)

I where c2 is not divisible !4 b. Proceeding all the way to

the first equation, one finally has

n=. (81)

I where ah-. is not divisible by b. In order for n, to be an

~f I b-3
integer, k cannot be smaller than - , which proves the result.

h-3
Conversely, if nh.- and nh+, are arbitrary multiples of b - ,

then proceeding from the middle equations up and down to the

U first and last equations, Just as in the proof of necessity,

one finds integer solutions for all of the other n's. The

9proof is now complete.

43
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Case 2: h is even. (h> 3)

The number of equations in Eq. (67) is h- 3 which is

now odd.

Instead of Eqs. (58) and (59), we shall use

2 O + lise] = nh (82)

x cos [h Ae] + r sin[h Ae] =' h (83)

Equations (67) are written as follows: J
b(n 2+n 3 ) - an2 = 0 (84) i
b(n2 +n4 ) - an3 = 0 (85)

h-4
-- equations

iib(nh,+ n-) -an4= 0 (86)

b(%+%)+ anh =0 (87)2 2
b(nh + nh+).anh-2 (88)

4144 H
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Ib(nh +h+ ah+2 (89)

- h-42 equations•.

b n h % =0 (90)

b(nh-3 + nh-.)- anh. = 0 (91)
i |-i

The solutions to Eqs. (82)-(91) define the array

ambiguity plot. It will be shown that the general solution

for the array ambiguity plot is given by Eqs. (82) and (83)
h-4

when nh.2 is an arbitrary multiple of b-2 and nh is an

2h-2 2arbitrary multiple of b 2 . Therefore the array ambiguity

plot is a two-dimensional lattice. If one compares this
lattice with that for h- 1 antennas, it follows from Case 1

that the ambiguities have been moved out from the origin by
a factor of b in one dimension, but are unaltered in the

other.

ta The proof of sufficiency follows nearly the same as

that for Case 1. Assuming that nh_ is an arbitrary multipleI h-4 -- h-2

of b-- and P. is an arbitrary multiple of b 2-, one starts

with Eqs. (871 and (88), working up and down equationwise,

and finds that integer solutions for all of the n's result.

For necessity, one must show that if nh_, and n ah

are non-zero solutions to Eqs. (84)-(91), then n-2 is divis-

ible by b and nh is divisible by b 2

1 145
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Unless h=4 in which case Eq. (88) is the only

equation and the stated result follows easily, Eqs. (87) and El
(88) imply that nh. and nh are both divisible by b.

2

There is therefore a highest power of b which divides U
both nh and 2 nh . One can therefore write

-2 -2 2 b

n = , (92) ii

and,

nh = P1bk+1 (93)

where not both A and P, are divisible by b. Proceeding as

in Case 1, one starts with Eqs. (87) an. (88)? working up or

down, and finds that k cannot be less than -- or else one

of n. or nha. will-not be an integer. This completes the

proof, and exhausts all possibilities for AG.

ARRAY AMBIGUITY TOPOLOGIES FOR ANTENNAS ARRANGED IN A Ii 1
REGULAR POLYGON

The equilateral triangle, square, pentagon, and U
hexagon cases have already been completely solved. The array

ambiguity plots for the equilateral triangle, square, and U
hexagon are all two-dimensional lattices. The pentagon has

no array ambiguities at all. It will now be shown that any V
regular polygon with n sides for n >6 has no array ambiguities
at all.

From the previous discussion, the proof depends on.

proving that cos 2- is irrational for n>6.

If cos 2A were rational, it is clear that 2 cos 2_
n 2, a nis not an integer for n If cos = in the lowest

terms, then b >1. As one adds antennas with AG=- , the

2
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previous proof shows that with each added antenna, the array

ambiguity plot is always a two-dimensional lattice in which

the plot has been altered from the previous step. On the

other hand, after n steps, added antennas are only repetitions, VI
and the array ambiguity plot cannot change thereafter.

This contradiction proves that cos is irrationalIn
for n> 6 and that therefore there are no array ambiguities

for regular polygon antenna arrangements with more than

6 sides.

I n ANTEN AS ON A CIRCLE WITH n > 4

The remaining loose end is to show that all three

candidate topologies can be achieved for this arrangement

for any such n.

Examples have already been given which show that the I

two-dimensional lattice and no ambiguity cases can be achieved.

So all that remains is the one-dimensional lattice topology.

Let n= h+ 1, and select an equal central angle case

with h antennas such that sin - =G vr- and cos - A9 -t" 2 3 2 3

From the h antenna, move around the circle through a central

angle v where the nth antenna will be placed. Choose

sin v= ! 1 1andCOS 1v 5: J. (See Fig. 16.)
2 2 - 5 aco 2 -

Some other useful numbers are

sin v = r2J - CO V o +
sin A cos

sin Ae= COS AoX =-J. :

47 4
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0'
etc.

Fig. 16 AN ARRAY WITH n =h+l ANTENNAS

Since cos ABO is rational and 2 cos Ae is not an i
integer, the array ambiguity plot of the first h antennas is

a two-dimensional lattice given by the solution to (68)-(77)
or (82)-(91), where a = 2, b = 3. Also, by an argument sim-

ilar to the regular polygon argument, there ar'e no antenna

duplications.

For the last antenna, another equation must be

added, namely the last one of the system Eq. (27), which in

this case is I
sin Ae+~ ) sn ( AG+~ i) + nlsin AO -0.

V) (94)
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From Fig. 16,

d 2 =d = 2r sin L = r3- (95)

Is and
dh = 2r sin 2 v = r l-3 (96)

Multiplying Eq. (94) by r, there resultsn -, ++ ....:
;3+ -3 J 12 51. 3 + ,j+ ,,1 E2

V+ r 1 i 0 (97)

3 ;2

i Multiplying through by 4t7 7 , there results

5 12 (4+T-8+j)+ =h o. (98)

As in Section 2, it follows that there exists a set

of three antennas which have the same array ambiguity plot

I' as the first h antennas of Fig. 16. The equations for the

plot are given by either Eqs. (68) and (69) or Eqs. (82)

and (83) depending on whether h is odd or even, and where

the n's in those formulas are arbitrary multiples of the

* appropriate powers of 3, since b = 3 in this case. The

3ii equivalent set of three antennas will not in general lie on

the circle.

iI A new four antenna array is constructed as follows:

throw away the first h -1 antennas in Fig. 16. Order the

I' three antennas in the equivalent three antenna array such that

I4 9
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Eqs. (68) and (69) or Eqs. (82) and (83) hold, where the

subscripts in those equations are changed to the appropriate

values. Translate the three antenna array until the third

antenna lies atop the hth antenna of Fig. 16.

This four antenna array has the same array ambiguity

plot as that for Fig. 16, the equations for which are given

by Eqs. (68), (69), (98) or (82), (83), (98), where the

subscripts are changed to the appropriate values. In the H
notation of Section 2, c 1 and c2 are both irrational, and

Eq. (98) has non-zero solutions, for example nh_2 = 4,

12, nh = 3.

This is an example of Case 2 for four antennas in

Section 2, where it is shown that the array ambiguity plot

is a one-dimensional lattice confined to a single line.

All possible array ambiguity plot topologies have

now been determined for the cases examined.

Figure 17 is a flow chart which sumarizes the [I
topology results for Sections 2 and 3.

5i

U
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n-ANTENNA

ARRANGEMENT,

n>l

DO THEY LIE YESY
ON A LINE? n-2? PARALLEL LINE GRID

O NO op SINGLE LINE

n 3? YES TWO DIMENSIONAL LATTICE
FORMED BY INTERSECTION
OF TWO NON-PARALLEL[!NO FAMILIES OF EQUALLY
SPACED PARALLEL GRIDI! ~LINESj

REGULAR 
YESnY4 

R

POLYGON?n4R6

l ,, NO

NO [NO AMBIGUITIES

EQUA CETRA YE n -47 O -10-TWO DIMENSIONAL LATTICE
ANGLECASEFORMED BY INTERSECTION

OF TWO NON-PARALLELi FAMILIES OF EQUALLY
YES |_ SPACED PARALLEL GRID

- ARRAY OF EQUALLY SPACED
POINTS CONFINED TO A LINE

DO THEY LIE
ON A CIRCLE ?

L NO YES NO AMBIGUITIES

Fig. 17 FLOW CHART FOR ACHIEVABLE ARRAY AMBIGUITY TOPOLOGIES FOR
CERTAIN ARRAY TYPES
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4. RIVARIANTS OF ARRAYS WITH TRIANGULAR

ARRAY AMIGUITY PIOTS

AREA OF A TRIANGLE FOIKM BY TWO VECTORS

If d. and d 2 are t-o vectors, then triangles can

be formed from them in four ways; put the tails together and

connect the heads, put the heads together and connect the

tails, or put the tail of either at the head of the other

and connect for the third side. (See Fig. 18.)

L!di di-

gid

dd 2

U,. I Fig. 18 TRIANGLES FORMED BY TWO VECTORS

The same four triangles are generated by putting

the tails of jd and :I2 together and connecting the heads,

' j where the four combinations of signs give the four triangles.
k

All of the triangles have the same area, given by
£1

U A = d x I EI. (99)

*; The proof is simple and is omitted.

I Preceding page blank
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NWEESSMR AND SMEIIN CONDITIONS THAT T1O TRIANGULAR
AML ARRAYS HAVE THE SAME ARRAY AMIGUITY PIDT

The primary result of this sub-section is the
following theorem: L

Let d 12 be vectors along two of the sides of one

triangle, and ', f vectors along two of the sides of another. 4
!hen a nscessary and sufficient condition that the two tri-

angles have the same array ambiguity plot is that there i
exist four integers ax,, , P such that

I .,,+P' d(100) L
d= d,+ Pz2(101) '

where

azp,- 2P1 = + . (102)

To prove this, let U denote an arbitrary vector in

the ambiguity plot plane which joins the location of the tj
true source coordinates to an arbitrary array ambiguity.

It follows from Section 2 that

d • :, (103)

d . nX (104)

where all array ambiguities are generated as m and n range

over all integers.

Using vector algebra, one can solve the above two i
equations for the vector U, the solution being 11

(mcd42  - n 1
3.) X ( 1 x ) (105)

(I x 2 ) (I x 2)"
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Since dl and d2 are not collinear, any vector in

1 the antenna array plane can be expressed as a linear combina-

tion of d1 and d2 " in particular one may write Eqs. (100)

I and (101), where alP, a 2 , 02 are some numbers.

Since the triangle formed by d and d has the same

array ambiguity plot, one must have m °1 =n

wiere m' and n' are integers. Dotting Eqs. (100) and (101)

with U, one obtains

ml %m + ,n (106)

n' = %m + p2n. (107)

Take m =1, n = 0, and one sees that a1 andc

must be integers. Similarly, take mn = 0, n = 1, and one sees

that 03 and P2 must be integers.

If one takes m= :1, n =0 and solves for m and n,
02 a2one sees that - and are integers, where

~~~lp 1- a a2P1. (108)

Similarly, taking m' =0, n'= 1, one concludes that

. P1 and - are integers. The case A= 0 is excluded, as this

would imply no solution for these two cases.

Since A must be an integer, if it were not plus or

minus unity it would follow that alj P, a2, P2 are all

multiples of A, and hence from Eqs. (106) and (107), so are

m and n', which is a contradiction. Therefores A =

and the necessity is proved.

For proof of sufficiency, assume Eqs. (100), (101),

(102) hold with al, P,, a2 , 02 integers. Dotting Eqs. (100)
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and (1o) with U produces Eqs. (106) and (io7), so that

whenever m and n are integers, so are m' and n'. J

If one solves Es. (100) and (101) for d1L and IV

one has

i determinant of the coefficients is ,which is also ±I.

Dotting Eqs. (109) and (110) with *U* shows thatghen-

I ever m.# and n' are integers so are m *and n. This completes
rthe proof of the theorem.

First Corollary: There are two corollaries to the theoremjust proved which are of interest. The first is as follows:

if two triangular arrays of antennas have the same array

ambiguity plot, then the areas of the two triangles are the

same.

To prove this, form the cross product of and
using Eqs. (100) and (IQI). One has

x x I.

The result follows from Eq. (99) and the fact that A = *1.

It is shown in Section 2 that there are five

distinct topologies for array ambiguity plots. It is also 3
shown that the two-dimensional lattice point topology can

-always be generated by some triangular antenna array, and i
that every triangular antenna array generates such a topology.

,56
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It will be convenient to refer/to a plot with that

topology as a triangular array ambiguity plot (TAAP). The

above corollary shows that if P is a TAAP, then there exists

a number T(P) uniquely determined by P, such that the areaI4
of any triangle formed by three antennas which generate P is

T(P). T(P) will be called the triangular array area (TAA)

of the array ambiguity plot P.

Second Corollar: Let P be a TAA2P, and let d.and d2be two

vectors in the antenna array plane which form a triangle

j generating P.

Two vectors in the array ambiguity plot plane are

formed as follows: Ui is a vector joining the true source

coordinates to the nearest ambiguity along a direction per-

pendicular to d, and U2 is a vector joining the true source

coordinates to the nearest ambiguity along a direction

perpendicular to d.

Expressions for V3 and 92 are obtained by setting

m 0, n = 1 and m = 1, n = 0 respectively, in Eq. (105).

One has

-_x x ((1xl)

I
= X, ( 1 3X2)

The area of the triangle formed by V3 and V2 is

113. X '  From Eqs. (122) and (113), using vector algebra,

one has

X21Sxu = -X •.(114)5Z 7 t2 (d

57 :
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I'
from which one has

l1 -~xUl __ I
I X 2 7 "TP (115)

Therefore the area of the triangle formed by 1. and

and 1, is also a plot invariant. Denoting the area by E(P),

one then has

EM(P) = )," (116)

This last result is the second corollary. E(P) will

be called the elemental generating area (EGA) of the array

ambiguity plot P.

This result is in agreement with the fact that if

the antennas are moved closer together, the ambiguities move

further out, and vice versa.

NECESSARY AND SUFFICIENT CONDITIONS THAT AN ARRAY WITH
h + 1 ANTENNAS (h k 2) HAVE A GIVEN TAAP

It requires no more than h vectors joining various

antenna pairs to describe the array for ambiguity purposes.

This follows from Section 2 and the discussion of ordering

of the antennas. If they are ordered in an arbitrary way

Q, (, ... , , then 341 (k=1,2,...,h) may be taken

to be the vector with tail at and head at *The

Eqs. (13) can be rewritten as expressions involving these

v e c t o r s . 1 t

One could also take d to be the vector with tail

at @ and head at , as either of the two sets of vectors p
will produce equivalent sets of the Eqs. (13).

So let V be any set of h vectors (there may be

duplications) which describe the antenna array, and assume
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that the array has a TAAP. Let _ and d. be two vectors

describing a triangle which has the same TAAP. Since any

vector in the plane can be expressed uniquely as a linear

combination of d and 12 , one can write

dk =L xd + kd2 k = 1,2, ... ,2 h. (7

The necessary and sufficient conditions that the

array and the triangle array have the same TAAP is that the

a k's and 0k are all integers and that there exists no

integer other than +l which divides all of the h(h-1)2

determinants

Aik = aiP k - ak%, (118)

as will be proved.

Let U be the vector in Eq. (105) with m =1 and

n=0, so that from Eqs. (103) and (104), 1.*U = and

-4d = 0. Since the two antenna arrays have the same TAAP,

d k must be an integral multiple of X. If one dots

Eq. (117) with U, one then sees that a necessary condition

for the two arrays to have the same TAAP is that the ak's

are integers. Similarly, taking m= 0 and n= 1 implies the

same thing about the k's. So for the rest of the proof, it

is assumed that the %'s and Pk's are integers.

If one dots Eq. (117) with any vector such that

Eqs. (103) and (104) hold, one then sees that any array

ambiguity of the triangle array is an array ambiguity of the

h +1 antenna array, The integer condition on the ak's and

Pk' sis therefore both necessary and sufficient that this

be the case.
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To complete the proof, one must show that the

determinant conditions are necessary and sufficient that

every array ambiguity of the h+ 1 antennas is an array

ambiguity of the triangle.

Note first that for h= 2 the theorem has already

been proved in the previous sub-section. So assume h 3. 1
Order the equations so that d and d are not

collinear. If this were not possible, all of the antennas LI
would lie on a line and the array could not have a TAAP.

By making appropriate linear combinations of pairs )
of equations of Eq. (117), one can write

A 6.j a, j .P (119) 1
and

-ad a'+d a d, (120)
ij 2 j I I i

for j = 2, 3, ... , h. g
Next, multiply Eqs. (119) by a2 , (120) by p2, and

add, obtaining

for j = 3, 4, ... , h.

Since A1 2 /0 (1 and d are not collinear), it is

clear that all of the d1s for j = 3, ... , h can be expressed

in terms of' dj and d using the A's alone.

If I is a vector in the array ambiguity plot plane
connecting the true source coordinates with an arbitrary

array ambiguity, then V dotted with all of the '" ark s  r

integer multiples of' X.
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If one sets

d U =nX, j 1, 2, ..., h (122)

and dots Eq. (321) with U, one sees that all array ambiguities

can be found as follows:

First, find all integer solutions to

A n +A n +A n =0 (123.)

2j : 3 12 j

for j =3, 4, ..., h.

Then (as in Eq. (105)) all pcssible vectors U defining

the array ambiguities are given by Th

1 21

where n. and n2 are found from the first step.

Taking the first two equations of Eq. (117) and

performing the cross product, one sees that one can write U

in terms of dX and d2 , resulting in

- +(no -n~ ) 1 I (n,-n2. ) ]x (nX 2 )
t "and~hence= " P 2:(z 2 :)1 X ( z X 12) (..5.,*

U = (125)
A 12( d 1X 2) (11x*2

and hence

2. U (126)

na - n1 2

SA 12  ( 2-7
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In addition to A02 ) 0, it also follows that at

least one of 2 and is not zero, for otherwise d would
2j J1

be collinear with both d, and 12, an impossibility. From

here on, separate cases will be considered.

Case 1: h =3. -i
Here Eq. (123) is

623n, + A 3 n 2 + A1 2n 3 = 0. (128) --

Let g be the greatest common factor of the Ats, and

write

Ajk = g j k =i, 2, 3, (129)

so that fl
6.3n, + 6 3 1n 2 + 81 2n 3 = 0 (130)

where 612 j 0, at least one of 823 and 831 is not zero, and

the three 6's have no common factor.

Suppose without loss of generality that 623 / 0.

Then let g' be the greatest common factor of 823 and 612.

(g' will be unity if 831 is zero.)

From the theory of congruences, the solutions for

nj and n2 can be found by solving

-8L n 31n d / 2(

g~ g , (mod -3 
11

n must be a multiple of g'. If 631 = 0 this follows L

since g' = 1. If 631 / 0, it follows since 631 can have no

factor in common with g'.
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623
So for n2 an arbitrary multiple of g', since - and

812 9
- are relatively prime, one can multiply Eq. (131) through

by the inverse of mod 2) and solve for n,. If p is

this inverse, then

ni -6 -3. P1 + n -2 (132)

where n can-be any integer.

Assume that every array ambiguity of the four

antenna array is also one for the equivalent triangle.

n 2

Let - be zero and n = 1. Substitution into Eqs.
g a2(126) and (127) then results in concluding and - are

integers. Hence gg' divides both a2 and P2"

If U is an arbitrary vector representing an array

ambiguity of the four antenna array, dotting Eq. (101) with U

then implies that d OU is always a multiple of Xgg'. Unless

g =1, this contradicts the result that n2 can be any multiple

of g'. Therefore, the determinant condition is necessary.

Conversely, suppose the determinant condition holds

with A23 assumed to be / 0 without loss of generality'. Then

one solves Eq. (128) as before, where now A. 3 , A3 1 and A.,

have no factor in common and, setting n2 =mg', the solution

for array ambiguities is given by

n 2 =mg' (133)

A~2= -AApm + n -2, (134)

where m and n are any integers, g' is the greatest common
A23

factor of A&3 and A,., and p is the inverse of (mod -2
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Substitution into Eqs. (126) and (127) yields-

. [_n m (PA3 1 P2 
+ g P'

[f2ng 'P.i 2 + Jal

d2 U giA2 16

It remains to show that the coefficients of m and n

inside the brackets are integers. TO

If one sets J= 2 in Eq. (119) and forms the cross

product of Eq. (119) with V, one obtains the identity

p2A31 = - 3A1 2 - 143 (137)

One concludes from this equation that 2 is divisible by g'.

If one multiplies Eq. (137) by p, and notes that

Ph23  g +kA 1, where k is some integer, one sees that

pA31P2 + g'P = -Aj 2[P3 p+P 1 k]. (138)

Hence, in Eq. (135), the coefficients of m and n in

the brackets are integers. Repeating the process with

Eq. (120) shows the same result for Eq. (136). The proof

for h =3 is now complete.

Corollary: For h= 3, if P is the TAAP generated by d, and d2 ,

Eq. (117) holds with integer coefficients, and P' is the TAAP

generated by the four antenna array, then T(P') = gT(P),

where g is the greatest common factor of the determinants.
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To prove this, it will first be shown that the TAAPI generated by

81 631P (19
d di +T--d 2  (19;and 12 1

.41141

d 2 = d 2  (14o)

is the same as that generated by d', d': d'. where the 6's
1

arid g Iare as before wihen g was not necessarily unity.

First, let Udenote an array ambiguity of the TAAP 4
generated by d3', d2, 3  Then d1* U = Xn1L from Eq. (132)
and d - U = n2 from Eq. (133). Dottting both sides of

Eqs. (139) and (140) with I results in

d *U =Xn (141)

~ Id ~ * =Xkm (142)

I which are integers.

Conversely, let UI denote an array ambiguity ofd

and d. As in Eq. (105), one writes

(nd.4 -nm-m ) x d x )

IPerforming the cross product of Eqs. (139) and (1410)
one has

6 12 A a'
so that Eq. (143) may be written

121
( g7 6 d mg d3.x (5

31)3
(15



TH JObENS HOfINS UIVE*91TY
APPUED PHYSICS LABORATORY

S$LVIR 0"%t4 MAWYLANO i

[12
ed . (1n- _ M6 b3 p (146)

and

2 X [mg'] (147)

which satisfy the conditions of Eqs. (132) and (133) that

be an array ambiguity of the plot generated by a, a, 3"

To prove the corollary, one has, using Eq. (144)

412
d// x ,d" 8,: - (ax 12): = (11X a).- (148)

The corollary then follows from the previous results

on TAAs.

Case 2: h -4. I
The proof here is to show that the h equations may

be replaced by h- 1 equations whose determinants have the

same g.c.f., and IAAP's are preserved.

To this end, expressing and of Eqs. (139)

and (140) in terms of 'i and a2, one has

gla1 + 83 1 1P2  It+ 'l+ 3P2
,,612 + 612 ( )

and

a. ;7d5 + 2 (150)

where a4 and have the same TAAP as d and
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Dividing Eq. (137) by g results in

I 633 = p_3 62 1623 (151)

Similarly, one derives the identity

a2 631 = -a3612 - 1623. (152)

From the definiion of p, one has

p62 3 = g1 + k612  (153)

where k is some integer.IFrom Eqs. (151) and (152) it is seen that D2 and a2

are divisible by g'.

I Multiplying Eqs. (151) and (152) by p, and using

Eq. (153), substitution into Eq. (149) results in

--(a p+ k) , - (P3P+ P1 k) a2. (154)

I Also,

d2 =-11., 
+ ;7 d (155)I|' g'2

The determinant of the coefficients can be found by computing

I the cross product 1' X42 , which from Eq. (148) is found to

be just g.

I In the h original equations, select any one other

than the first three, namely

d =a + (156)

I
.67



1"C J"44O tNOMNS UNIVCUrIty

APPLIED PHYSICS LADORATORY
ftVt" § MAIrLANO '7T1

The three determinants associated with Eqs. (154),

(155), (156) are given by i

A:L = g (157)

,A ]! A p~ kil (158)

A 21. (1,59)
3 9, g

Since g is the greatest common factor of A12, A23, w
and A3 ., the six determinants of the equations for d1 , ),
d will have the same g.c.f. as Eqs. (157), (158), (159)

if any factor of g which is a factor of A2 and A3 is also a

factor of AIJ, A1j, A3J, and vice versa. -

Toward this end, some more identities are needed.

If one forms the cross product of Eq. (121) with -d, divides

by g and rearranges terms, one arrives at

A 3 j6 1 2 + AL6 2 3 = -A 2 j& 31 (160)

If one multiplies Eq. (158) by 623, substitutes

Eqs. (153) and (160), divides by g', substitutes Eq. (159),

one arrives at

23 A~ + k6 . (161)3j g'2 313*

If one multiplies Eq. (158) by 812, substitutes

Eqs. (153) solved for k612 , substitutes Eq. (160), divides

by g', substitutes Eq. (159), one also has

A A2 - p631A3. (162)

Now let g" divide g, A, A. From Eqs. (161) and

(162), g" divides asj and A From Eq. (159), g" divides A2j,
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Conversely, let go divide g, A , A2j, A From
SEq. (158), g" divides A. From Eqs. (161) and (162), g"
iE s ( 15 3 go divides E3.6 (162)y

divides k63 ,t' 3 and P631 3.3 If one divides Eq. (153) by g',

one sees that p and k have no factor in common. Hence g#

divides 631A3. From Eq. (159), g" divides g'A3. But g" and

631 have no factor in common, so that g" divides A3 .

The equations have now been reduced to h- 1 equations I
whose determinants have the same g.c.f., and TAAP's are pre-

served. Now repeat the process until three equations are

reached. An appeal to the theorem for Case 1 then proves

I the theorem in general.
.4h

Corollary: If h+ 1 antennas not on a line have a TAAP

denoted by P', with dk being h vectors representing the array,

I k = 1, 2, ..., h; if d1 and 1 axe such that Eq. (117) holds

with integer coefficients, and P is the TAAP generated by

i d1 and d., then T(P') = gT(P), where g is the greatest common

factor of the l determinants. A
2

The proof follows from the corollary to Case 1 and

the procedure discussed in Case 2. 
A1

* THE FUNDAETPI AME T1HORM

If h +1 antennas are not all on a line, then the

* 1
array has a TAAP if and only if the ratio of the areas of

all pairs of triangles formed by antenna elements is a I
rational number. In addition, if another array of three

antenna elements has the same TAAP, then the area of the

triangle is the largest number which divides into the areas

of all triangles of the h + 1 antenna array with integer 4
quotients.
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For proof, assume first that the array has a TAAP.

If d, k = ,2, *.., h, are h vectors which generate the

array, any triangle of the array can be described by two

vectors, each of which is a sum or difference of one or more I
of the d"s. The area of the triangle, from Eq. (99), is

k
determined by sums and differences of cross products of the

F"s. From the theorem of the previous sub-section, the area is

therefore the sum of determinants of coefficients of Eq. (117)

times the area of a triangle which has the same TAAP. Since

the coefficients of Eq. (117) are all integers, the ratio of

the areas of any two triangles of the array is a rational --

number. In addition, the ratio of the area of any triangle

of the array to the area of a triangle having the same TAAP

as the h+l antenna array is an integer. If one orders the
antennas Q ) , (2)-)hl.adlt d' denote the vector

with tal at @ and head at (B for k =l, 2, ..., h,

then the areas of triangles formed by d and divided by

the area of a triangle having the same TAAP are just the set

of determinants of Eq. (117), which have no factor in common

by virtue of the theorem.

Conversely, suppose the ratio of areas of triangles

of the array are all rational numbers. Order the k as
above in such a way that d and d are not collinear.

Next, write 1 l
d d k = 3 4). so),h. (163)

Forming the cross product of dwith and respectively

shows that the 's and 01 's are rational numbers.

If 1 and are expressed in lowest terms, and one

multiplies each equation by the lowest common multiple of

70
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the denominators ofk and AM one has the equivalent of

Eq. (121), where for each equation the &'s have no factor

in common.

Following the same development as in the proof of

the previous theorem, 1, V, ' generate a TAAP, and may be

replaced by the vectors d1 and d of Eqs. (139) and (140).

One repeats the process of elimination of equations

until one arrives at just two vectors, having proved in the

process that the original array has a TAAP. This completes! the proof.

I
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5. ANTENNA ARRAY CONSTRAINTS FOR AMBIGUITY RESOLUTJION

AN AREA CONSTRAINT FOR ARRAYS WITH THREE ANTENNAS
zb Theorem I: If a source direction can be determined unambig-

A uously by a three antenna array whenever it lies within a

central cone having half-angle p, then the area of the

triangle formed by the three antennas is no larger than

1~~-2- where X is the wave length of the signals. Also,
12 sin p
this number is the least upper bound of the areas of all such

triangles.

I Proof: Order the sides of such a triangle by length, so

that

d2  P1 d3

d1

FIg. 19 TRIANGULAR ARRAY

Then

"1 V 2 a 3 (165)

and

Pj d V&A, (166)

IPrecsdiag P896 blank 7
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From Eqs. (22) and (23), the distances from the true

source coordinates to the ambiguities are computed to be

Dm,n csc j ) + -2 cos v (167)

where m and n are any integers. II
As in the discussion surrounding Eq. (12),

D ~2sin p (168)
m,n

for all m,n not both zero.

In particular, if m= l, n=0, one has I
xcSc v2

'k 2 sin p (169)

or

d si v,! (170)
sin v2  2 sin p

From the law of sines, the left hand side of

Eq. (170) is the same as d2 sin v1 , so that 1
d n sinv : sin p* (171)

If v 3 Lit it follows from Eq. (166) that

sin V1 a -i-, so from Eq. (171),

sd2 (172)

74i
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From Eq. (166), sin v2 
> sin v 3, so from Eq. (170),

d1 sin V3  i p- (173)i 2 sin p

From multiplying Eqs. (172) and (173) together, one

I obtains

1 d d sin v (174)
1 12 sin p

the left hand side being just the area of the triangle.

If V1 t -- one constructs a new triangle as follows:

Drop a perpendicular from (D to the extended line joining

I and @ (see Fig. 20). On the extended line, lay off

line segments each of length d3 until the point where the

dropped perpendicular intersects the line is encompassed by

the line segment. If k+1 coincides with the point of inter-

section, stop at 'y.

I.

d3 ....

Fig. 20 CONSTRUCTION OF A NEW TRIANGLE
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All of the triangles of Fig. 20 having one of the

line segments as a side have tb same area. In addition,

they all have the same array ambiguity plot. The latter

follows from the discussion in Section 4 that the vectors I
representing any two sides of a triangle determine its

ambiguity plot. Since any two adjacent triangles in Fig. 20

have two common vectors, one along the extended line and the

other along the common side, the result follows.

In the final triangle, the only possible obtuse
angle is @ . If this angle is less than a-, the

area inequality holds by virtue of the previous proof. If

not, then one repeats the process of constructing a new

triangle by starting with triangle (k G instead of

0 © , and extending the shortest side in the same

manner as before. One kieps repeating the process until one

reaches a triangle where all angles are less than L.t at

which point the theorem is proved. The procedure must stop

eventually, for in any triangle with an angle l - the ratio

of the shortest side to the longest side is - L, and the
th i

shortest side of the n triangle is always the longest side
th

of the (n+l) triangle unless the procedure stops. If the

procedure did not stop, the length of the longest side, and

hence the area, would approach zero, a contradiction. The

proof of the area inequality is now complete.

To show that the expression is the least upper

bound, consider an equilateral triangle with di = d2 = d3 -

------ .Its area is .From Eq. (17),
J sinp 12amn p 1Pi

Dnn 2 sin p (m-n) + mn 2 sin pmn, mn > O. (175)
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If one of m or n is zero (not both) and the other is

one, then D 2 sin p. If neither is zero, then Eq. (175)
m,n

shows that no ambiguity can be closer to the true source

coordinates than 2 sin p. The proof of Theorem I is now

complete.

PROPERTIES OF UNAMBIGUOUS PHASE FOR ARRAYS HAVING A TAAP
ND FOUTE AIMTNNAS

Preliminary Concepts and DefinitionsIJ
For the purposes here, there are three antenna 4

topologies which must be distinguished. These will be

called type 1, 2, 3 quadrilateral arrays, respectively.

5 TAAP is defined in Section 4.

Type 1: Three antennas lie on a line. I,.

Note that not all four antennas may lie on a line
i since the existence of a TAAP is assumed. :

I? Fig. 21 TYPE 1 QUADRILATERAL ARRAY

7
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T : The triangle formed by some triplet of antennas

contains the fourth antenna in its interior. "1

Fig. 22 TYPE 2 QUADRILATERAL ARRAY

TZe 3: Given any three antennas, the fourth antenna is

exterior to the triangle formed by the three.

Fig. 23 TYPE 3 QUADRILATERAL ARRAY 1;
Other Definitionsi

1. The area of a quadrilateral arrey is defined to

be the area of th appropriate triangle for type I and type 2

arrays, and the area of the enclosed region as in Fig. 23

for type 3 arrkys.

2. Label the antennas V/ ®o (, in an
aibitrary fashion. Four numbers C., C21 C31 C4 are defined )
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to be the areas of the triangles obtained by omitting

antennas n, ®, (, ®, respectively. One of these

numbers will be zero for a type I array. C is defined to be

the area of the quadrilateral arTay.

3. Five numbers B., B2 ; B 3 , B4 , B are defined as

follows: For a type 3 array, B. = -CI . If antenna
(j=2,3,4) is opposite to antenna rJ, then B = -%. If it

is adjacent to antenna (Dj, then B = C j For a type 2

array, if antenna 0 (j=l,2,,4) is the interior antenna,

then B = -Cj, otherwise B = CJ. For a type 1 array, if

antenra f7\ (J=1,2,3,4) is the antenna not on a vertex of

the triangle of Fig. 21, then Bj = -Cj, otherwise Bj = Cj.

Finally, B = C.

4. Four numbers A,, A2 , A3 , A4 are defined as

follows: If T(P) is the triangular array area of the TAAP

generated by the four antennas, then

B
j = l, 2, 3, 4. (176)

5. A denotes the ratio of the area of the quadri-

lateral to T(P).

Theorem II: For any quadrilateral array in a plane having a

TAAP, :the A's have the following properties:

1. A1 ., A2, A3 , A4, A are all integers.

2. A3, A2 , A3 , A 4 have no factor in conmon.

3. Al + A 2 + A3 + A4 = O'

4. 1A1 1 + IA2 1 + IA31 + IA4 1 2A.
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Proof: The first two properties are a direct consequence of

the fundamental area theoram. The lest two follow easily

from the definitions of the A's.

Theorem III: For any source direction, let ji, V 2 , 11, V4

denote the unambiguous absolute phase* at antennas @J, , N

(33, ®, respectively, in units of cycles. Then

A141 + A2 V 2 + A3 s + A4 1 4 = 0. (177) 1

Proof: Using the vector notation of Section 4, the vector

description and antenna numbering of the antenna array is

taken to be as depicted in Fig. 24. 
,

0
d3

2

~1i

o 112

0 !
Fig. 24 ARRAY ANTENNA NUMBERING AND VECTOR DESCRIPTION

Strictly speaking, Fig. 1,4 depicts a type 3 array.

By letting antenna (3) move downwards, one gets a type 1 1
array and then a type 2" array.

* See the discussion which follows the proof of Theorem III. I
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Let n denote a unit vector pointing up out of the

plane of the paper and perpendicular to it. With the above

convention, it then follows that regardless of array type,
I one has:

1 -4 d' x(178)

B n3 + X). (180)

If and 4denote vectors which describe a triangle
generating the same TAAP as the four antenna array, one sees

~from Eq. (117) that

a 3 - A3. [ ( 1 x '*)I = A32T(P) (182)

where , and 12 are chosen so that I. X2 lies in the positive

n direction.

From Eqs. (176), (178), and (182), one then has

1 A1  632- 15
Similarly,

I. A2 = A1 3 + A2 3  (184)

A3 =A 21 + A31  (185)

A 4 = A12  (1.86)

where the A's are defined as in Eq. (118).
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If 8 is a unit vector in the direction of the source,

then from Eqs. (5), (6) and (10), the unambiguous phase j
differences are given by

= tij+," - = f d s, 1) =,2, 3. (187)

Take J = 3 in Eq. (121) and dot both sides of that

equation with s. 'Using Eqs. (183), (184), (185), (186), (187), 1
one has

0 = + A3:LP2' + 612%

= 23(g±2 p1) + + g3 2 12 L 4 ~3)

321(1 1 3+ 623)12 + (4 2 1 + 1&314'3 + A2

A 3.A1 + A2 ±2 + A3L3 + A494  (188)

rwhich proves Theorem III.

DISCUSSION OF UNAMBIGUOUS ABSOLUTE PHASE

The absolute phase in any given antenna has meaning

only when a reference phase is given, and obviously has no

( bearing in itself on any angular coordinates of the source.

The phase difference between any pair of antennas does not

depend on the reference phase, and is a measure of a function

of the angular coordinates of the source.

Nonetheless, as will be apparent shortly, it is

more natural for the purposes of this paper to work with the I

9's instead of the V's. One should note that, from the 5 '

third property of the A's in Theorem II, the apparent

presence of the phase reference in Eq. (177) is only an 3 "

82 1
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illusion, for one can write

A-Ip, + A211 + A31 + A49 4

3. = 1 + A2 (p1 +P) + A3 (p1 + l+ ) + A(+(P3I
(AI+A2 +A3 +A4 )V I + (A 2+A3 +A4 ) + (A3 +A4 )P + A4

(A2 +A3+AJ)q1 + (A3+A4 )qP + A 4 . (189)

So Eq. (177) is really an equation in phase differ-

ences only.

AMBIGUITY RESOLDION AND T07ANMOM PROBIWMS WIT FOUR ANTENNAS

Suppose one wishes to arrange three antennas in a

plane in such a way that any source direction within a cone

hzing half-angle p can be determined unambiguously. The

area constraint of Theorem I may vry well negate the possi-

bilty of doing this for at least two reasons: One may be

forced to put the antennas so close together that mutual

coupling effect"s are unacceptable, or one may find that due

'to the short base lines involved, the errors in measuring

[~the source direction are unacceptable. In either of these

events, it is natural to consider increasing the number of

'". I antennas. The objective in so doing is to move the antennas

farther apart while maintaining the ambiguity separation fcr

I i the array ambiguity plot generated by the new array that one

wnuld )ave had with the unacceptable array with three antennas.

Although this is possible, there is a price in

addition to adding antennas, and this is a new tolerance

problem that has entered the picture.

I8i
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Before discussing this problem in more detail, a few

words about array ambiguity plot topologies are in order. In

the.two dimensional problem and for more than three antennas,

one has the choice of three such topologies: a TAAP topology, I
a one-dimensional set of lattice points confined to a single

line, or no array ambiguities at all. For this application,

and because of the tolerance problem, it is conjectured that

a:TAAP topology iS alwa-s best. This is based on experimenta-

tion with specific cases by the author, and a firm proof has

not as yet been devised. Based on the conjecture, only

antenna arrays with TAAP topologies are considered as candi-

dates in this paper.

Prior to introducing the tolerance subject, next

consider the four antenna casep and suppose all phase differ-

ence measurements are error free. As shown in Section 2, all

information for ambiguity resolution is contained in three

distinct unambiguous phase difference measurements, p, q, q.

As in the derivation of Eq. (188), a certain linear combina-

tion with integer coefficients of these three quantities is

zero for any source direction. It follows from Section 4

that ' + i where in1, are integers,tha 1) 92' (P + M2) q)3 + MV M2, may
will satisfy the equation if and only if q4 + mn, p + in2,

( + m3 represent the phase differences from a cource direc-

tion separated from the true source by an ambiguity of the J
TAAP.

This suggests the implementation for determining the

true source coordinates, let T11 qpa %3 be the ambiguous

phase measurements, and suppose - < 92

i!< 9 § I One known that there exist integers n., n2, n3
such that = (p + n%, 9cp2l=p + n2 and p3 = T 3 

+ n3

Further; .he first expression in Eq. (188) will be an integer

84 ;
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if one replaces q4, , by 9 ,, p3" Thus +

6 31%+ 412% n, where n is an integer which one determines
when cA, c, q3 are fmown. If one finds any integer solutions
to A.3n + A3 1n + A12n3 = -n, then the qT"s so constructed

Uare the phase differences associated with either the true

source direction, or removed from it by an ambiguity of the

TAAP. If the distance in the TAAP to the nearest array

ambigui.ty is 2 2 sin p, then one can select the correct solu-

tion for n1 , n2 , n3 from tae cone of directions constraint.
Having found the unambiguous values q, p, q, one sees from

Eq. (10) that one has redundant information (three equations

in two unknowns) for x and y. One can then form x and y as

linear combinations of p, p, to optimize some statistic,

say to provide minimum variance on x and y based on whatever

statistical assumption about measurement errors is made.

It will be convenient for the purpose of analysis to

work with the final expression of Eq. (188) instead of the

one using phase differences. One reason for this is that

there are several ways one can make phase comparisons and

several resultant triplets of phase differences one can use.

In general, the first expression of Eq. (188) will look

F different for different triplets, and their underlying equiva-

lence is disguised. If each equation in phase differences is

expressed in terms of the [its, then one always gets the same

equation. There is therefore no preferred set of triplets

or ordering of phase comparisons.* (This statement is false

for more than four antennas as far as which equations one

should use is concerned.)

*All four antennas must be used in generating the triplet.
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For example, one can write

+ A.1.+ + A 3 + A1

= -A1 (p-ji) - (A1 +A2 )(g3 -V2 ) + A4 ( 4 -1 3 )

= A0h2-41) + A3 (' -i) +A(±-j)

: etc. (190)

using property 3 of Theorem II.

Another reason why the use of the equation in g's

is useful for the sake of analysis is the natural interpreta-

tion of the A's as normalized areas (plus or minus) of

triangles of the quadrilateral array.

Now suppose errors are made in measuring pf, a, ps.

If one imagines the errors to increase from zero, one sees

that one will arrive at the wrong value of at least one of

n1 , n2 , n 3 when n can no longer be correctly determined.

This will not occur if the inequality

l~J C11I~~ + A e + A es + A4e4j < (11A1e1 + 2 2 + 3 3  2Ae4

holds, otherwise it will. The e's are the errors in absolute

phase at each of the four antennas. The condition Eq. (191),

both necessary and sufficient that all phase differences be

unambiguously resolved except for TAAP ambiguities, may be

wri+ten in terms of phase difference errors for any choice

of triplets of phase differences.

It is not clear what one can say in general about

system performance when Eq. (191) is violated, except that

the effects are bound to be undesirable. Until subsequent

analysis or simulation shows performance not seriously
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affected, the author takes the position that one should

attempt to satisfy Eq. (191) in the selection of an antenna

array.

An interesting sufficient condition for Eq. (191)

to hold can be derived as follows. Suppose

ii = 1: 2, 3, (192)

If the EiIs are all equal to ±e, and add up with the worst

possible sign in Eq. (191), one has from Theorem II,

2Ae <. (193)

The errors for phase differences will not exceed 2e

in absolute value, If one defines T to be the value of 2eI when Eq. '193) is an equality, namely U (this definition

will change for more than four antennas), then one has the

following theorem:

Theorem IV: For any four antenna array with a TAAP, if the

I absolute values of the errors in phase at all antennas are

less than 1 T =-_ , then, except for the TAAP ambiguities,

all phase differences can be resolved unambiguously.

Combining Theorems I, IV, and the definition of A,

one has the following inequality:

.. (19)
T ( -24 sin2 p 6 (Area of Quadrilateral Array)

Thus, althorgh the area of the quadrilateral array

can be made as large as possible while preserving the triangu-

j lar array area, it can be done only at the expense of tolerance

on the phase difference measurements.
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Suppose, for example, that one needs X - n

. 24 sina- 6
and one can only guarantee less than i2o of phase difference
error (T : 1) " Then the area of the quadrilateral array

should not exceed 3 in , If for other reasons this is

unacceptable, then using four antennas does not solve the

original problem. Thus, although Eq. (194) does not tell

one how to construct a four antenna array with the desired

properties, it serves as a bound which sometimes tells one

that any four antenna array will be unacceptable. 3
T will subsequently be referred to as the "suffi-

cient tolerance" for the array. The mathematical expression

for T will in general differ from a for more than four

antennas. I

PROPERT~IES OF UNAMBIGUOUS PHASE FOR AMRAS HAVING A TAAPq
AND FIVE ANTEMWA

If four antenna arrays are unacceptable, one may

wish to use five. In this case there may be considerable

relaxation of the tolerance constraint over the four antenna

case.

For five antennas, the discussions in Sections 2

and 4 show that two equations of the type of Eq. (177) are

needed to resolve ambiguities that are not TAAP ambiguities.

Each basic equation uses four antennas or three phase differ-

ences, and all five antennas are used. Since there are five

ways of choosing four antennas, there are five equations.

An independent proof will be given that there are exactly two

independent equations, in that there exists at least one
independent pair, and for any independent pair, the other

three are linearly derivable from the pair. It will also be

shown that in general there are two particular equations that
it is best to work with. 8
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For five antennas, twelve different antenna array

topologies are distinguished, as shown in Fig. 25. Any

topology is always one of the twelve.

Using the antenna numbering as given in ?ig. 25,

ten numbers Cij = Cji for i, j = 1, 2, ... , 5, i j j are

defined to be the areas of the triangles formed by omitting

. antennas Q and O . Five numbers Ci are defined to be the

.9-rea of the quadrilateral formed by omitting antenna Q.

C is defined to be the area of the entire array, which is

taken to be the area of the enclosed regions of Fig. 5.

L Twenty-five numbers Bi, i, j = 1, 2, ..., 5 are

defined as follows: for i = J, Bij = 0. For j >i,

1 Bji -Bij. For i < J, Bi is given by Table I, where the

antenna numbering is given in Fig. 25. Bij is always LiJ"

[The proper sign is given in Table 1.

Table 1.

Signs for Bij = ii

Types 1,2, Types 6,8, Types
All Types 3,4,5,6,7 9,10,11 6,9,.12

L B12
B1 3  +

B 1 4

B1 5  +

B23  + + -

B24 +

B2S

B 3 5 +

B 45  + - .
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20

TYPE I TYPE 2

D3 0
04/ 0,o

TYPE 3 TYPE 4

C)TYPE 5 0Z)TP60

0 - D
TYPE 7 TYPE 80 0.------ %~

" E) . .C)
TYPE9 TYPE 100

0 - -_TYPDFig. 25 THE TWJELVE TOPOLOGIES FOR FIVE ANTENNAS

90'

t ±



APPLIED PHYSICS LABORATORY
ftVLt m P*0. MeALAOj

In addition, let P denote the TAAP of the entire array

I and, except for i - 3 in a type 7 array, let Pi denote the TAAP
I of 'the array generated when antenna ( is omitted. Define Aij by

Ai, i, j = 1,2, ... , 5. (195)

I Ui A l s o le t

Ai = - i 1 2, .. 5 (196)

and

A = (17

The theorem analogous to Theorem II is now as follows:

i Theorem V: For any antenna array in a plane having a TAAP

and five antennas, the following properties hold:

H 1. Ai3 , Ai, A are all integers, i, j = 1, 2, ... , 5.

2. The Aij have no factor in common, i, j = 1, 2,

... , 5.

3. Except for i = 3 in a type 7 array, the greatest

[ common factor of Ai, Ai , ... , Ai is

T(P i )

Li In a type 7 array, A31 = ... = A35 = 0.

i4. Aij = 0 for i = 1: 2, ..., 5.

5. IAjt = 2Ai, for i = 1,.2, ...,

6. The matrix ((Aij)) is skew symmetric.
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Proof: For fixed i, the B ij's are the signed areas of the

triangles of the quadrilateral (except for Bii, which is I
zero) formed by omitting antenna fj . Except for the possi-

bility of changing the sign of all of Ail, ..., A 5 , the

sign conventions are the same as those for the four antenna

case derived earlier. So properties 4 and 5 follow from

properties 3 and 4 of Theorem II. Property 6 follows

directly from the definitions.

Properties 1 and 2 follow directly from the funda-

mental area theorem. So does property 3, because for any

fixed i, the fundamental area theorem implies that the great-
est common factor of B i l Bi2  Bis is unity.

T(Pi) T UP 7j T(Pij) TP,)
is thus an integer, and property 3 follows by multipli-

cation. The type 7 array case is obvious.

Theorem VI: For any source direction, let [t, P2, .. , Ps

denote the unambiguous absolute phase at antennas @ through

®, respectively, in units of cycles. Then

Aijj = 0, i = 1, 2, ... , 5. (198)

Proof: For each i, one is using a quadrilateral only, and

the theorem follows from Theorem III and the definition of

the Aij ' s.

ADITIONAL PROPERTIES OF ((Aij))

Theorem VII: For any i, J, k, I = 1, 2, ..., 5 the following

identity holds:

AA + AkA + Akij 0. (199)

AijARL+jkAUL A
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Proof: If any two subscripts have the same value, Eq. (199)

collapses to an obvious identity. If not, then there is

exactly one missing subscript; call it m. Since it is

obviously equivalent to prove Eq. (199) when the A's are

replaced by the B's, note that the B's appearing in said

equation are the signed areas of the six triangles of the

five antenna array which have antenna "- as a vertex.

Let n be a unit vector normal to the plane of

Fig. 25 and pointing up out of the paper. Let dmi, dj

dmk' dm be vectors with tails at and heads at Q ), ,

mk M[I ( , ® respectively. Then obviously

1 -. X

(dm mi kin1

2 (ii'mk) 20

1 -.

(1 Since all array types other than 1, 3 8, 12, are

LI limiting cases of one of the types 1, 3, 8, 12, it is suffi-

cient to consider only these four types in determining the[si~s in Eq. (200).

! .I iDefine Q to be the coefficient of n in

Table 2 relates to for antenna array
F types i, 3, 8, 12. Only cases or 1, 3 < 8 12) k < f wai -are

considered in Table 2.

T 93
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Table 2
vs. M2ij j

m i j Type 1 Type 3 Type 8 Type 12
1 2 3 -B4S +B45 -B46 -B45

2 4 +B35 -B35  "+B35  +B35
2 5 -B34 +B 3 4  -B3 4  -B 3 4  i
3 4 -B25  +B25  -B25  -B25
3 5 +B2 4  -B2 4  +B2 4 +B24

4 5 -B2 3  +B23  -B23  -B23

2 1 3 +B45  -B4 8 +B4 5  +B4 4
4 4 -B35 +B35 -B35 -B35

1 5 +B3 4  -B3 4  +B3 4  +B3 43 4 +BI5 -B15 +BIB +B15

3 5 -B1 4  +B 14  -B1 4  -B14
' 4 5 +BI-3 -B13 +]B13 +B]3.3,t

3 1 2 -B4 5  +B45  -B45  -B4 5

1 4 +B2S :B2 5  +B25  +B251 5 -B24 +B24 -B24 -B24
2 4 -BIe +BIB -B15 -B15

2 5 +1B1 4  -B1 4  +B 1 4  +B 1 4

4 5 -B 12  +B1 2  -B1 2  -B 12

4 1 2 +B3 5  -B36 +B35  +B3 5  II 1 3 -B25  +B2 5  -B2 5  -B25
1 5 +B23  -B23  +B2 3  +B2 32 3 +BI5 -B 3. +B15 +B:Ls
2 5 -B13 +B:L3 -B3.3 -B3

v 3 5 +B 1 -B 12 4B1.2 +B,2

1 2 -B3 4  +B3 4  -B34  -B3 4

1 3 +B24  -B2 4  +B24  +B2 4
1 4 -B23  +B23  -B 3  -B23
2 3 -B14  +B14  -B14  -B14 ,
2 4 +B1 3  -B13  +B 1 3  +B13

-B32  +B12  -B12  -B12
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Inspection of Table 2 shows that regardless of the

value of m, for i < J, k < A., one always has

[mi q mk = BipkB4 (201)

[ But Eq. (201) is valid in general, as interchanging
i and j or k and A changes the sign of both sides of Eq. (201).

Equation (199) will therefore be valid if and only if

(dropping the subscript m on the s's)

P Using vector algebra, the following string of (202)

identities proves the result:

S-dA k d j)j d..( di)I

d k '  j k (edi' i k( e k dj

(- a ( )± +(aj d -

(II IX
* (zero vector) = ., (203)

UTheorem VIII: The matrix ((Aij)) has rank two.

Proof: It has rank at least one since not all the A 's

vanish (not all antennas lie on a line).

Ii 95
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For the antenna numbering in Fig. 25, A25 never

vanishes for any array type. Therefore the second and fifth

row vectors

(A21, 0, A2 3 , A 2 4, A2 5 )

and

(A5l, A52, A53 , A5 4 , 0)

are linearly independent, and the rank is at least two.

Let i = 1, 3, or 4, and one has

Asi (A21, 0, A23, A24, A25 ) + Ai2 (A51 , A52, A53, A54, O)

: (A 5 A21 + Ai2A5i, Ai 2As5, A5 iAs3 + Ai 2 As3, A5iA2 4

+ Ai2A5 4 A5 iA25 ). (204)

Applying Theorem VII three times, the right hand

side of Eq. (204) can be written as

A52 (Ail, Aj2, Ai3, Ai4, Ai).

Since A52 $ 0, it follows that every row of ((Ai,))

is a linear combination of the second and fifth rows, thus

proving Theorem VIII.

The following theorem will be needed for the dis-

cussion of the tolerance problem for five antennas.

Theorem IX: Let (A aj) and (Abj) (or (Aja) and (Ajb)) denote

two linearly independent rows (or columns) for j = 1, 2, ... , 5
of the matrix ((A ij)),) i, j = 1, 2,).. 5. Let g aand gb

denote the greatest common factor of A for j = 1, 2, ... , 5,
and Abj for j = 1, 2, .o.., 5, respectively. Then Aab 0

and Aab is divisible by gagb .
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Proof: Since ((Aij)) is skew symmetric, it is sufficient to

prove the theorem for rows.

ab= 0, then, since A aa abAba Abb= ,
it follows that the a and b--" columns would all be zero

because the a and b rows are linearly independent and

p ((Aij)) has rank two from Theorem VIII. Since ((Aij)) is

skew symmetric, the a and b rows would also all be zero,

[ a contradiction. Hence Ab # O.

Set i = a and j = b in Eq. (199), divide by ga gb

obtaining

(abAkA _ aJ + - (205)

From Theorem VII, Eq. (205) holds for any , L = 1, I
2, ... , 5, and the four expressions within the paren heses

are all integers by virtue of the definition of ga d gb"

Hence A Ab is divisible by gagb for all k, A = 1, 2, ... , 5.

If p is some prime number which divides either g or
let p be the highest power of p which divides g and p 2

be the highest power of p which divides 'Hence p1 n d

divides AabAkd for all k, A = 1, 2, ... , 5.

From property 2 of Theorem V, one may choose k and
such that p does not divide A Hence p divides Ab,

and Theorem IX follows by decomposing ga and gb into their

prime factors.

(Ci Corollary: For eachi, i = 1, 2, ..., 5, let g denote the

greatest common factor of the numbers Aij, j = 1, 2, ... , 5.

Te for i, j = 1, 2, ... , 5, is divisible by g

(gi is undefined for type 7 arrays with 1 = 3.)
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Proof: If A = 0 for some i, J, the corollary is obvious.
ij

If Aij ., the proof follows exactly as in the proof of

Theorem IC, where one replaces a and b by i and j respectively

in Eq. (205). 1

AMBIGUITY RESOLUTION AND TOLERANCE PROBLEMS WITH FIVE ATENNAS

Instead of the single Eq. (177) in the four antenna

case, there are now the five Eqs. (198). From Theorem VIII, i
however, there are only two independent ones. Proceeding as

in the four antenna case, it follows that if one knows the

values of four ambiguous phase differences (pi utilizing all

five antennas, and if one finds four integers n3. n2, u,, n 4

pi p + n(206)

is a solution to Eq. (198) when Eq. (198) is rewritten in

terms of the 'Is, then one has all possible unambiguous

phase differences resulting either from the source direction

or a direction separated from it by a TAAP ambiguity. If the

TAAP ambiguities are far enough apart, then as before the

correct solution may be chosen.

Again, it does not matter in what order phase differ-

ences are taken. Unlike the four antenna case when there was 1
just one equation, one now has a choice of two out of five,

and from the point of view of measurement tolerances, it does 3
matter how they are selected.

Although the Aij's have no factor in common, the

coefficients of any one equation may have a factor in common.

Except for i= 3 in a type 7 array, the coefficients of the

i t equation have a greatest common factor T-(Pi from
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Theorem V • So instead of using Eq. (198) one uses

where the coefficients of Eq. (207) in any equation have no

factor in common.
th

Select two equations from Eq. (207), say the ath

and b th equations, which are linearly independent. Then

consider all pairs of independent equations each of which is

a linear combination of these two and has integer coefficients.

Formally, let c, d, u, v, 1j. Jj be defined as

'1 follows:

_dA

= ij = 1, 2, ... 5 (208)ii ga gb "'I

9 aj b = j V j = 1, 2, ... , 5 (209)

where 1, Jj are integers, and one works with the two inde-

pendent expressions I 1.L1 and 1jo

As in Eq. (191), non-array ambiguities are resolved
,i correctly if and only if

1[ (210)

et < J1 (211)

The concept of the sufficient tolerance T carries

over to the five antenna case, but the formal definition is A
quite a bit different.
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Set

S =1 I (212) 1
and

JTjl I J. (213) 1
If T denotes the smaller of 1 and 1, then T is

the maximum of Tduv over all selections from Eqs. (208) and 3
(209) with the prescribed properties.

The next task will be to find bounds on T To this

end, note that, by setting j = a, b in Eqs. (208) and (209),

it follows that c, d, u, v are rational numbers.

From Eqs. (208) and (209), direct computation yields

g g a (214)

From Theorem VII, Eq. (214) becomes

'j~k -'kj =(cv-du) NAjk) j, k=l, 2, ,

[ where (215) 1
1Aab N = -- (216)

a non-zero integer by virtue of Theorem IX.

Next it will be shown that (cv-duN is a non-zero

integer. It is non-zero since N / 0 and , and

are independent. Since c, d, u, v are rational, set

(cv-du)N = a fraction in lowest terms. If p is any prime

factor of q., then property 2 of Theorem V allows selection

of Ajk in Eq. (215) such that p does not divide A jk Since p

100 1S f
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does not divide q3., and the left hand side of Eq. (215) is an
integer, p could not have existed, and thus (cv-du)N is a non-

zero integer. Hence

1(cv- du)NI k 1. (217)

One now has, from Eqs. (215) and (217),

I Jkl :r' ITJ lIIJkl + 1Ik 1lIjj J, k=l, 2, ... , 5.(218)

1 Summing Eq. (218) over k, one has

j2A J ljI + I i~j , j = 1, 2, soy, 5 (219)

from property 5 of Theorem V.

Summing Eq. (219) over J, and dividing by 2, one has

1A I J. (220)

The larger" of I and J cannot be less than j,

so one has the inequality 1

T 1(221)I
Tq J Aj

An inequality the other way can be obtained by

observing from Fig. 25 that one can always choose two inde-

pendent equations of Eq. (198) such that Ai < A and A < A.

So, since Ai, A and A are integers,

2(A -1) Tp. (22
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N I
Combining with Theorem I, the analogous formula to

Eq. (194) is Eq. (221) where one substitutes for A the

expression

F- (Area of jth quadrilateral) x 12 sin2 p (223)

in Eq. (221).

One can replace Eq. (221) by a weaker inequality by

observing from Fig. 25 that
5

3 A 3A (224)

where equality occurs only for a type 10 array, so that j

T CP (225)

and, combining with Theorem I, 2!
T 36 sinp (area of five antenna array) (226)

As before, none of Eqs. (221), (225), (226) tells 3
one how to construct a five antenna array with the desired

properties, but they do serve as bounds which can sometimes

tell one how close a given array approaches the best in terms

of tolerance, or in other cases they may serve to show that

a five antenna array is inadequate.

Consider again the example that was used in the fourI 2 2--

antenna case, where TIT =I an- * 2 in . In this I
case one concludes from Eq. (226) that the area of the five

antenna array should not exceed 36 in2 , which is a considerable
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improvement over the 3 in2 result for four antennas. dne

, should also bear in mind that the 36 in2 number w1i rarely,

if ever, be achievable, but it gives one a goal to-shoot for.

fIn fact, it is conjectured by the author that none of Eqs.

, (221), (225), or (226) are ever achievable as equalities.

U SOME EKXAMPLES OF ARRAYS WITH FIVE ANTENNAS

Consider the five antenna array of Fig. 26. The

antennas, arranged on a circle, form an equal central angle

case according to the definition in Section 3. The array is

also type 12 of Fig. 25.

" IThe array ambiguity plot is given in Fig. 27. In

this plot, some of the sub-array ambiguities are also shown.

The following data on the array of Fig. 26 are

computed according to techniques developed here and in the

previous sections, and are given without proof.
d2

T(P) = . sin .029d- .0091 x (diameter)2. (227)

The matrix ((Aid)) is given by

ri0 -16 28 -28 16

16 0 -21 33 -28

( U ((Aij)) = -28 21 0 -21 28 . (228)

n 28 -33 21 o -16

U -16 28 -28 16 0

The Aits and A are given by

A= 44,A 2 = A 3 = A4 =I9, A= 44, A =65. (229)
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4' B
A Also, i

2Ai =235. (230)

The five Eqs. (207) are

-4i'2 + 93 794+ 141 0(231)

16g1.- 21% +33 4. -28 = 0 (232)

-41 + 3P2 - 3 4 + 4 = 0 (233)

28g., - 33v2 + 2113 - 16 Lr= o, (234) !

-4., + 742 - 793 + 4 =o. (235)

Any two equations selected from the above five are linearly

independent.

One can show in this case that one can do no better

as far as T is concerned than to choose Eqs. (208) and (209)

to be any pair of equations selected from Eqs. (231), (233),

(235). (Open question unresolved by the author: Is it always

true that for some pair a, b in Eqs. (208) and (209), one(c d)

gets the largest possible Tcduv for = the unit matrix?
It is conjectured that the answer is yes.))[

Hence one has for this array

q) = 045. (236) [1

Inequality (222) says

Tq, .0078 (237)

so that the array is considerably better than the worst

possible array for T.
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[I Inequaity (225) (the weakest) from Eq. (229) says

T .P: 072. (38
The next strongest inequality comes from combining

Eqs. (230) and (221), giving

T ,g .o65. (239)

A stronger inequality is derivable from inequality

(220). Since I and J are integer? and Ai = 235, I and J

cannot both be less than 16; so /

g t,-1 , (240

The next array example is given in Fig. 28.

I]
3f

[I n IS AN INTEGER >2

d d[1 nd ( i

Fig. 28 A TYPE 7 ARRAY

H 107[1- * * - ,,--' ~-$4
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The mitrix (A~) is given by

0 -1 0 2-n n-1

1 0 0 n-i -n

((A = 0 0 0 0 (241)
n-2 1-n 0 0 1

1-n n 0 -1 0

Also, one has 1
A= n-l, A2 = n A =0: A4 =n-l,

5
A 5 = n, A = n, A, = 4n-2. (242)i=l

One can show that as far as T is concerned, one can

do no better than to use the equations associated with the

first and fourth rows, namely

-p2 + (2-n)p4 + (n-l)p5 = 0 (243)

(n-2)Xi + (1-n) P2 + P5 = 0. (244) i

Hence T@ = 2-)' which from Eq. (222) is the worst

possible result. Equation (222) is therefore achievable, and

Fig. 28 represents a poor choice for n > 3 of antenna loca-

tions from the point of view of tolerance. I

THE ONE-DIMENSIONAL CASE FOR THREE AND FOUR ANTENNAS

It turns out that the one-dimensional problem is a

special case for the two-dimensional situation, and is equiva-

lent to the two-dimensional problem when all but one of the

antennas lie on a line.

1083
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Consider first the case of three antennas on a line.

Introducing a fictitious antenna off'of the line, one has a

'type 1 quadrilateral array (Fig. 29).

~I3

Fig. 29 TYPE 1 QUADRILATERAL ARRAY

III From the definition of the A's for quadrilaterals, 4

one has

A1 = T (245)

A2 = (246)

A 3 (247)

A4 =0 (248)
C

A -A 2 -4 7 (249)

where C x and C3 are the areas of the triangles formed by

omitting antennas Q and (3), respectively, and C is the

area of the entire triangle.

S109
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Since all triangles in Fig. 29 have the same altitude,

one has

C3.: C3 :0C = d2 ': d : (d1 +d2 ). (250)

Assuming the. array has a TAAP, it follows from the fundamental

area theorem that the A's of Eqs. (245) - (249) depend only

on the d's and not at all on the location 6f antenna®.

Furthermore, it is seen that, since A4 =0, Eq-. (177) depends

only on the phases at antennas ©, (, .

If one sets

di 
(251)

dj q

where p and q are integers having no factor in common,

Eq. (177) becomes

qj,-(p+q)pi2 + P 0(2)

One then has

T (253)

This might be more intuitive if one introduces the

quantity R which is defined to be the ratio of the separation

of the lines in the line grid array ambiguity plot for

ai the separationIantenas , ,O diidedby d+d2,

of the lines in the plot for only antennas Q and (3).
4 IFrom Section 2, one has

p + q. (254)

So I
TIP (255)
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For a given integer value of R, this analysis also

tells one where one should put antenna ®. If, for example,

one wished to expand the ambiguities due to antennas @ and

* ~by a factor of 10, then @ should be placed at any of
35, or ! of the way between antennas @ and

10' 10' 10' 10,
and one gets precisely the same answer in any of the four

cases. The sufficient phase difference tolerance in any of

these cases is 7, or 18".

Next, consider four antennas on a line. Introducing

a fifth fictitious antenna off the line, one has a type 7

V array as in Fig. 25. From the definition of the A 's, one

has

o_12 o 14 15
0

C [1 0 0 T(P 24 -

A j0 0 0 0 0 (256)
C -C
014 " 24 045

<ii7 -TY 0 0 T(P)
-C15 C 0 C45T M

[1 Again, the ratios of the areas of any pair of tri-

angles depend only on the ratios of corresponding line seg-

{ji ments along the base, since all triangles have the same

altitude. As before, assuming a TAAP for the five antenna

array,, the fundamental area theorem implies that the entries

in Eq. (256) do not depend on the location of antenna (.

iii4
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dl d 2  d 3

Fig. 30 FOUR ANTENNAS ON A LINE

If, in Fig. 30, one defines p, q, r to be three

integers having no factor in common such that

d 1 :d 2 :d =p:q:r (257)

then the matrix ((Aij)) is given by

0 -p 0 q P+q

P p 0 0 q+r -(piq+r)

((Aij)) 0 0 0 0 0 (258)

q -(q+r) 0 0 r j
-(p+q) p+q+r 0 -r 0

Also, Eqs. (198) depend only on the phases at

antennas (), (, (13, and any two of the four non-zero

equations determine the others.
at Suppose one used the first and fourth rows in the

attempt to choose good antenna locations. One would then have I

and

qjil - (ci+r).:2 + rp5  0. (260)

112 I
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If g, is the greatest common factor of p and q, and

g4 is the greatest common factor of q and r, then from
Theorem IX, gLg4 divides q. If one works with Eqs. (259)

and (260), inequality (217) reduces to -- , and from
g1g4

Eqs. (218) - (221), it is clear that for good tolerance one

should have q. as small as possible, preferably unity.

(Note that in the example of Fig. 28, - = n- 2, which is

only unity if 
n =3.)

So, suppose one sets

q = 9194 (261)

p = g a (262)

r = g4p (263)

where, in this case, g. and 94 can have no factor in common

F1 (otherwise p, q, r would have a factor in common), a and 94

have no factor in common, and P and g, have no factor in

common, since g, and 94 are greatest common factors.

One then replaces Eqs. (259) and (260) by

[1 - g4V4 + (a+g4 )p, = 0 (264)

an - (g3. )+0 2  + P9 = 0. (265)

will then be no smaller than the smaller of the two num-

bers __ _and 12+ g7 It is also clear from Eqs.

(218) -(221) that one should strive to make these numbers

close together. One should also bear in mind that in some

I! cases, another pair of equations might be better.

To obtain an estimate of how good T is when choos- x
ing antenna locations, one needs the inequalities (221) and

113
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(225), which, in the present notation, are

Tq +1 (266)
43(pq+r) +

andT (267)

respectively. I3(;T'+r) 
I

Before considering some examples, these results will

be recast in terms of R, the ratio of the separation of grid

lines for the array ambiguity plot of antennas ®, ®, ®,

Q to that for antennas @ and (D.

From the discussion in Section 2, the number L is

found to be just p, and R is p+q+r.

From Eqs. (221), (222), (225), (266), (267), for

four antennas on a line one has

1_ 1 1 IT( !9 (268)

For a fixed R, the problem now is to choose p, q, r

to make T as large as possible within the constraints of

Eq. (268). From Eq. (255), one sees that a considerable

potential improvement in T results by going from three to

four antennas, at least for large R.hi.

The following examples serve to illustrate that in

some cases considerable improvement can in fact be achieved.

It should be borne in mind that this paper is not

about the question of a formal procedure for best choice of

antenna locations, if indeed there is such a procedure. In

the examples to follow, the antenna location choices were

guesses on the part of the author, and there may in fact be

114
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better choices. They were the beat ones the author found in

an attempt to get as close as possible to the upper bounds

on T given by Eq. (268).

Case 1: Suppose R is of the form 3n 2+ 3n +1. R would then

be one of the set of numbers, 7, 19, 37, ... Then let
p = n2 , q = n(n+l), r = (n+l)2. One then has g,=n, g4 =n+l,

a = n, = n+1, and Eq. (261).holds. The two numbers
3.1 1 1_

and 2(+ g) both equal )' and one concludes

, that T (2(2n+1). Inequality (268) becomes

1 1 1!5 T !9 < (269)
7n Fn 4 17 9n+3VlOn2 + lOn+ 3 491 + 9n + 3

The ratio of

to12(2n+l) t Il0n2 + lOn +3

and the ratio of

2(2n+l) to

asymptotically approaches and respectively,, as n 00,

3and the latter ratio always exceeds - . Thus the choice of

+ [ antenna locations for R of the assumed form can be thought

of as being at least 75% efficient for tolerance, using the

weakest inequality.

Had one chosen p=l, q=3n +3n- 1, r=l as in

Fig. 28, the analysis there shows that one would have the
worst possible antenna arrangement, end the efficiency would

approach zero as n - co. If n= 3, say, so that R=37, this

worst case would have a sufficient tolerance T of only ,

115
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or E5° of errors on phase difference measurements. In the

previous choice of antenna locations, however, T is no worse1T

than 1' an improvement of better than a factor of 5. If one

wanted R= 37 with only three antennas, the analysis for that

case shows that one would be stuck with (from Eq. (255))

T= - not much worse then the worst case four antenna

location, but at least five times worse than the best case

four antenna location.

Case 2: R = n 2 , a perfect square. In this case, let p =l,

q=n-i, r=n-n. One has g1 =i, g4 = n-l, a = 1, = n. T"1 1____ 1 1_

The two numbers 1 and are - and2(a+ 94 ) 2(-P-+- 1 .) I 2n 2(n+l)'
respectively, and one concludes T@ 2" One can do

better than this in this case, for it turns out that one

should not work with the first and fourth rows of Eq. (258),

but rather the first and fifth rows. The equations equivalent
to Eqs. (264) and (265) are then

an2 - (n-l)4 4 + np5 = 0- (270)
and

-13 + n92 - (n-1)94 = 0. (271)

Both equations have the same tolerance T, so that T@ Z T,

a slight improvement over using the first and fourth rows.

Inequality (268) becomes

1(n- )s T@ ' . .3 m +- W (272)

So the above antenna placement is at least 5 e!87% efficient

for tlerance whenlRe as

116
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ANAIDGOUS THOREMS PERTAINING TO THE TWO-DIMENSIONAL CASE
FOR SIX ANTENNAS WITH A TAAP

First, one needs the theorems analogus to Theorems\

II (V) and III (VI) for four (five) antennas. Before this
II can be done, the definition of the A.s, B's, Cs must be

extended.

For six antennas, three subscripts are needed, so

Cijk (i, J, k = 1, 2, ... , 6) is defined to be zero if any

two subscripts are equal; otherwise it is equal to the area

of the triangle remaining when antennas @ , Q, @ are

, ignored. For any i, J, k, Bijk will equal +Cijk' and Aijk

will equal B i j k where T(P) is the TAA of the array of six

antennas. So all that remains in the definition of the B's

and A's is which sign to use in Bijk = Lijk'

Begin by numbering the antennas so that when

antenna @ is ignored, one of the twelve types in Fig. 25

results, with the antenna numbering as shown there. This

can always be done since it is assumed that the six antennas

have a TAAP, and cannot therefore all lie on a line. Then

the sign relating Bsj k and Csj k is defined to be the same as

in Table 1 for j < k just as if the subscript 6 were missing,

and for k < J, BIej k = -Bkj, as before.

Next, B62 6 is defined to be -B..., and is not zero.

Theorems V and VI and subsequent theorems for five

antennas would hold equally well if every sign in Table 1

were changed. With antenna (3) removed, there are thus two

possible tables for the remaining five antennas analogous to

f1 Table 1. Select the table for whichB 2  has the sign as

defined above. All signs for B are then uniquely deter-
(1 sjk

Ii mined except for cases where the area of the triangle is

1' 117
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zero, where it doesn't matter. So 1 is defined, endsjk
B5jk =-B 5k for J, k = 1, 2, ... , 6.

Similarly, define B266 to be -B -2. Again one

selects the one of the two tables with antenna @ removed

for which B256 has the defined sign. So B2j k is defined,

and B =2 -B2jk for J, k = ,. 2, ... , 6.

Proceeding in the same fashion, Bijk is defined by

choosing the proper table so that B1 2 6 = -B6 2 1 o From Fig. 25,

B621 j 0. AgainB kJ = -B jk, for J, k = 1, 2, ... , 6.

Suppose that the configuration with antenna ©

removed is not type 10 of Fig. 25. Then B4j k is defined in

the same manner, where B4 26 = -B624) with B624 / 0 from

Fig. 25. For a type 10 array when antenna e is removed,

define B4j k as before with B416 =-B 64, and B,,, # 0 from

Fig. 25. In either case, B4k j = -B4jk for J, k = l, 2, ... , 6.

Finally, suppose all antennas except ( lie on a

lkne. Then B, 0 for J k = 1, 2, ... , 6. If the array

is type 7 after emoving antenna (, and (3) is not on the

line joining I and ®, then B is defined as before

with B35 2 = -B25 3, whereB 253 1 0. If the array is not

type 7 when antenna 0 is removed, then Bsj k is defined as

before with B36 5 = -B63 5, and B63 5 / 0. As before
B3k j = -B j k for J, k = 1, 2, ... , 6.

The Bijk'S and Aijk's are now all defined, and

Bikj = ijk, J k = 1, 2, ... , 6.

The quantities Bij for i, j = 1, 2, ... , are defined

to be zero if i = J, and equal to the area (always taken as

positive) of the quadrilateral formed by omitting antennas

and otherwise.

118 *
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Bi for i = 1, 2, ... , 6 in, defined as the area

- (always taken as positive) of the five-sided figure formed

by omitting antenna Q.
'v B is defined as the area of the entire array (always

taken as the area of a convex region containing all points of

[the array, the region having three, four, five, or six sides.

Ai 3 , Ai, A are obtained from the B's by dividing

reach appropriate B by T(P), the triangular array area of the

entire array.

P i is defifed as the array ambiguity plot obtained
by omitting antennas ( and (1).

ITheorem X: For any antenna array in a plane having a TAAP

and six antennas, the following properties hold:

1. Aijk, Aip Ai, A are all integers, i, J, k = 1,

2, ... , 6.

II 2. The Aij k have no factor in common, i, J, k = 1,

2, ... , 6.

3. Except for those i and j for which Aijj = Ai a

... = Ai6 s = 0, the greatest common factor of
Ai J:L, Ai, ... ,: Aij s i T(Pij) jo i, j = 1, 2,

I 6"
4. L Aij k = 0, i, j =1, 2,y..., =62

k=l

II 6
5. L JA ijkl =-Aij, i, 1 2, ... , 6.

k=1

6. Interchanging o two subscripts of Aij k changes7'its sign. That is, for any i J, k = 1, 2,! .,6, one has A ijk =-AikM Aki j = -AkWi
=

A j Aki -A "jik"
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Proof: Except for property 6, the proof of Theorem X follows

from the definition of the As, and is proved in the same way

as Theorem V. The proof for property 6 follows the proof of

the next theorem.

Theorem XI: For any source direction, let g, V2 : ... , P6

denote the unambiguous absolute phase at antennas ( through

, respectively, in units of cycles. Then

t ijk kk = 0 i, j =1,2, ... , 6. (273)

Proof: This follows directly from Theorem VI and the

definition of the A's.

For property 6 of Theorem X, if i and j are such

that A = A = ... = A =0, property 6 is obvious.
ij 1 iJ2 iJe

If not, then

~Aijk~k =0

land

SAjik±k = 0

are equations in which the coefficients of the k's are

signed areas of triangles of the same quadrilateral. It

follows from the derivation of the Ats for five antennas

that the two sets of coefficients are either identical, or

one set has all opposite signs from the 6ther set.

For i = 5, j = 6, since B,8, = -B652- it follows
thatA ss=-A skfor k=l, 2, ..., 6.
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For i= 2, J 5, sinceB 25 = -B2, it follows'
thatA =-A for k = 2 6.

ithat A 2k s for k = 1, 2, ... , 6.

Similarly, for i 1, j = 6, the result follows
Usince B362 = -B612 . By setting k = 1 in the previous step,

on: can show that B 1 = -Braze,/SO the result follows for
~i = i, j = 2. (A's and Bts are interchangeable as far as

sign is concerned.) Also from Fig. 25, B 15 cannot vanish.
Setting k = 1 in the third previous step and k = 5 in the

'I = 1, j =. 6 case, one can show that Bi. s = -B5 16 , so the
result follows for i =, j 5.

P- So for any pair i, . selected from 1, 2, 5, 6,
Aijk = -Ajik for k = 1, 2, ... 6. For the remainder of the

proof it will be assumed that the array is none of types 2,
4, 5, 6, 7, 9, 10, 11 if antenna ( is removed. If the
desired results follow under this assumption, they must
follow in general, as these types are all limiting cases of
types 1 3, 8, 12.

This assumption implies that perhaps B62 3 = B6 3 2 = 0,

but B does not vanish for any other pair i, j such that no
two subscripts are equai.

Since B3 es = -B6 35 , the result follows for i = 3,
j=6. Similarly, since B356 = -Bs3s, the result follows
for i = 3, J'= 5. Setting k= 3 in the i=l, = 6case
gives B1 63 = -B61 3 . This, combined with 3etting k = I in
the i = 3, 1 = 6 case gives B1 36 =-B = B361 = -B316, so
the result holds for i = 3, J = 1.

I If the array is not type 3 with antenna 0 removed,
thenB 6 2 3 0*. Setting k =2 in the i= 3) = 6 case and

H 121f.
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k=3in the I= 2,j= 6 case, one hasB 32 6 = -B3 62 =B 6 3 2 =

-B62 3 = B2 6 3 = -B 2 3 6 , so the result holds for i = 2, . = 3.

If the array is type 3 with antenna © removed, then suppose
that B1 23 $. Setting k = 3 in the i = 11 = 2 case and

k=2in the i= 3, j = case-leads toB 3 =-B 2 1 3 =B 3 =

-B13 2 = B3 1 2 = -B321, so the result follows for i = 2, 3 = 3.

IfB1 2 3 = , then antennas an, , (li, on ai
line and Bs k  0 for k = 1, 2, 409y 6.

It has now been shown that for any pair i, j

selected from l, 2, 3, 52 6, AIjk = -Ajik, k = 1, 2, ... , 6.

Finally, since B4 .2 = -B.4 2 , the result follows for

i =4, ='6. Also, since B42 = -B246, it follows for i = 4,j=2.

Set k = 4 inthe i = ,= 6 case and k = 1 in,the

1 = 4, = 6 case. This leads toB4:s = -B461 = B6 4 1 =

-B61 4 = B1 6 4 = -B1 46, so the result holds for i = 4, J = 1.

Set k = 4 in the i= 3,= 6 case and k = 3 in the

i = 4,J= 6 case. This leads to B43 6 = -B46 3 =B 6 4 3 -

-B63 4 =B 3 6 4 = -B3 46, so the result holds for i = 4, J = 3.

Set k= 4 in the i = 5, = 6 case and k = 5 in the

i = 4, j = 6 case. This leads to B 4., = -B4 6 5 =B645 -

-B 6 5 4 = B 5 6 4 = -B.4., so the result holds for i = 4, J = 5.

This completes the proof of property 6 of Theorem X.

The theorem analogous to Theorem VII is the following:

Theorem XII: For any subscripts i, J, k, A, m, n = 1 2,

..., 6, 3
Aijk Amn + ikn 3Am +Aikj3Mn Ai(24

AA + AA + + AA =0. (274)
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Before proving this, it is noted that, if any two

subscripts are equal, the expression reduces either to an

obvious identity, or is a special case of Theorem VII. For

example, if j = n, it reduces to AijAaj - AijkA j  0.

If i = A, it reduces toA Aim + AikmAijn Aj =0

which follows from Eq.(199), since .this is the set of

Eqs. (199) for a five antenna array where antenna © is

omitted.

Proof: Consider the matrix

A A A
Am~k fIn. m

M = AiMk Ai A ii (275)

Aimk Aimn Aim/

[1 Expand the determinant of M by the first row, and

use Theorem VII and property 6 of Theorem X. One has

D(M1L) Afrk( AiAimj + inmAiI + A (Ailk Aij Aik

Im kin+ A!a~j

A A mkAimAinj + AjnAi mAij k + A Amk n

=Ai~m( A jikAinj + Alm~j A +Alm' (276)

lB 123..............................-
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Similarly if one expands the determinant of M. by

the first column, one has

D(M 1 ) =Ak(A i A i j + Ainmi).Am .Q
+A , (AminAm j + Amn t vj)

+ +A~ (AALJ + A~A±imki
IAAk n j  Ai.k mim&nj + AimkAlmiAljn

=Ai Ainj + Ai+kAmnj + Aimk n) (277)

Equating Eqs. (276) and (277), one has

Aitf (Aijk~mn + AiknAjtm + Aikjmn + AikmA.jn 0. (278)

The expression within the brackets is the expression

in Eq. (274). One may assume that A, / 0 for the sake of

the proof, for if Ailm = 0, one could imagine moving an

antenna slightly to cause Ailm # 0, and in that case the

theorem follows. It follows in general by an appeal to

continuity.

There are at most fifteen distinct equations (except

for changing the sign of all terms by inverting the first

two subscripts) in Eq. (273). The next theorem will prove

that there are exactly three independent ones.
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Theorem XIII: Given Six antennas not all on a line, then

the following six by fifteen matrix has rank three:

1A121 A 2. A2

fl = A " (279)

Fo (Ass, A: "6 A566)

BProof: FrmFig. 25, A 2 5 6  0 since antennas ,) .(3),
never lie on a line. The rows defined by (A2 51)) (A26i) and

(Ae,) are therefore independent since A.2  = A2 5 = A2 6 2 =

A26 6 = A5 6 5 = A56 6 = 0. The matrix M therefore has rank at

13 least three.

Consider an arbitrary row defined by (Aia), where
i and k are fixed and m ,2, ... , 6. Setting A = 2, J = 5,

n = 6 in Eq. (274), one has

A = I +A Am + A (28o)
256AiM -Aid'2m ikiA5em*

U Since A2 5 6  0, the row (Aikm) is a linear combina-
tion of the three rows shown to be independent, and the

theorem is proved.

THE TOLERACE PRO)BLEM FOR SIX ANEMINAS WITH A TAAP
The machinery has now been developed for proceeding

with the tolerance question.

Of the at most fifteen distinct equations in Eq.

(.273) there are only three linearly independent ones. In an
analogous manner to the five antenna case, one seeks three
equations which maximize T
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If g l is the greatest common factor of the row

having i and j as the first two subscripts (= from 3 ki'

Theorem , then the equations corresponding to Eqs. (208)

and (209) are

CA CA CA
115+ 1226i+ 13 56JIV j )2 21

g25  926  956=,2 ., ~~.L

C A C A C A
2. 2 j + 22 28J + 23 56J"gis g 6 ss J j 11 2, ... ,1 6 (282) "!

925  926  g56  i

C 3225 C 32 26J + 33 : K j=1,2, ... , 6 (283)

g25 g2 6  g5 6  -

where the determinant of the C's is / 0,. and the I's, J's

and K's are integers.

One then works wit te three independent expressions

ljg, Jg and K 11,

IIJI 1 (285)

IKJ 1(286)

1261
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If TC denotes the smallest of I then TI

is the maximum of T0c j over all choices of the C's with the

prescribed properties.

The next task is to find bounds for T 9 To this end,

note that, by setting in turn j = 2, 5, 6 in Eqs. (281)-(283),

it follows that all of the C's are rational numbers.

Consider the matrix equation

C11 C12 C13
- - - A A

92 5  92 6  g 5 r,5, 25n 25.t

c 21 c 22  C
- - g A A A

928 gs 2'- "5sA 6 A 56n

n

{j =n ) j, , =,2, ... ,6. (287)

Kj K K

j fI If DQJ)The next step is to equate determinants of Eq. (287).

If D(C)) D(A), D(I) denote the three determinants, one has

D(C)D(A) = D(I). (288)
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From Theorems VII, XII, and property 6 of Theorem X,

one has, expanding by the firs row, j

D(A) =A (A A +A A )
253 62n 61 6n2 621

+ A251n (A62t J + A 6 AJ,

+ A (A tA n + A A

253 62 J 66n25f 625 6L3 2L6

= A A +A A A +A Ajn

=-A 25 (A A +A A + A ) i
25 25 U6f 25n2 3.6 25t36n

= )(A2s6AYjn (A26 Aj n  (289)

So[(A2D(C) A = D(I). (290)

Now D(I) is an integer, and (A25 r)2D(C) is a ration-

al number. Ifone sets (A2 56 )2D(C) equal to a fraction in

lowest terms, the denominator must divide A~m n for all U, 3,n.

This contradicts property 2 of Theorem X, which proves that

(A25 6 )D(c) is an integer. Since it is not zero, one has

(A ) D(C) 1 l. (291) 3
One then has the following string of inequalities: 3

'i. For all U, J, n = 1, 2, ... , 6,

J A ~n I D(I) 1 ! I11 11 , I IKtI + I I j I I. 1K 1 + I InI J I IKI I
!+ I~nIIJ.UIIKjI+ IIUIIJmIIKI+ IIUIIJnIIKJI. I '

(292)
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Summing over n, and using property 5 of Theorem X,

I one has

2Aij : [,Ij,,KII + ,IKJ ,]J + [ IjIJ i + I ,jjJiIK

+ [IJi IKI + IJtI IKjI]I. (293)

- Summing over I and J, dividing by two, one has

6

A Aj 31JK. (294)

Since the largest of I, J, and K cannot be less than
3 6f A~j, one has

.. ... 
(295)

L,j=l

6

The expression 2 A is just twice the sum of the

(normalized by T ) areas of all quadrilaterals that can be

formed by taking the antennas four at a time.

The analogous expression for Eq. (224) carries over,
and is

Aj - 1, 2, ..., 6 (296)
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Iso that a weaker inequality than (295) is

1,T (297)

1where A is just the (normalized by T ) sum of the

areas Iiall pentagons that can be formed by taking the

antemias five at a time.

It can be shown (the proof is omitted) that I
6

A = A 1A (298) j
so that a still weaker inequality is I

T ! -1(299)

where A is the (normalized b ) area of the hexagonal
array. • /

It is conjectured that none of the inequalities of

Eqs. (295), (297), or (299) are ever achievable.

It is an open question (probably answered in the

affirmative) as to whether or not one can achieve the best I
tolerance by some selection of three of the equations (273)

without having to form additional linear combinations of them.

For an inequality the other way, the lower bound on

T is probably larger than but the point is not

belabored here, as arrays with T this small are poor arrange-

ments and not therefore very interesting. An obvious lower

bound follows from property 5 of Theorem X and the observation
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that the area of a quadrilateral of the array cannot exceed

the area of the entire array. One then has

T (300)
, I

Inequality (226) carries over as follows:

U2
T 48 Sin p (area of six antenna array)

3 IFor the example considered after inequality (226),

where 2 a in p - in , one has a bound on

on the area of a six antenna array of 486 in2 , a considerable

improvement over the 36 in2 bound for five antennas. Of

course the bound can probably not be achieved, but as

examples to follow will show, one can approach it. An

important observation to make is that each time one adds an

antenna, starting with four, the tolerance-ambiguity-area

dilema is eased by an order of magnitude if achievable

measurement errors are not too large and if one arranges the

antennas properly.

THM GENERAL PLANAR ARRAY CASE FOR ARRAYS WITH A TAAP

Consider the case of n antennas in a plane. Assume

n k 4 and that the array has a TAAP. (They therefore do not

3 all lie on a line.)

Let Qk denote the sum of the areas of all possible

I subarrays with k antennas, where 4 ! k 5 n. Qn is Just the

area of the entire array.

- ILet P denote the array ambiguity plot of the entire

array, and T(P) its triangular array area.
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The inequalities for T Tthat have been proven for

n 6 are special cases of the following inequalities:

n- ( 
T(P)

"" . (n-2 (302)

Inequality (302)for n > 6 is only a conjecture at

this time, since the .author has not yet proved it. It is

also conjectured that none of the upper bounds can be reached

by T 9 (except for the case n = 4).

The innermost inequality is the strongest bound, and

the outermost is the weakest bound. Note.also that for n =4,

the left and right hand sides collapse to the same value so

that inequality (302) becomes an equality (the same result

as previously derived for this case).

AN EXAMPLE OF AN ARRAY WITH SIX ANTENNAS

The first array example is given in Fig. 31. The

six antennas are arranged on a circle in a hexagon which is

not regular. The array ambiguity plot for this array, which

is a TAAP, is given in Fig. 32.

The following data for this array, computed accord-

ing to techniques developed here and in the previous sections,

are given without proof.

T(P) ei i.e6d() sin (52.615') 2 (.0805)2(.7946) s- .002d

(303)
where d is the diameter of the circle.
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I I

05 232.6150 04-1800

47.470 03 -116.3050

- 79.920°

3 " 5-7.760

'il I "\'/

__di - 0.4025d 02"52.6150x -o -

S, 01.00

Fig. 31 HEXAGONAL ARRAY OF COPLANAR ANTENNAS
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The values for Aijk with i < j < k are given in
Table 3.

abTable 3

Aijk for Antenna Array of Fig. 31

i j k Aijki!k
1 2 3 30..I -70

5 88S6 -48

3 4 70
S 5 .124

6 84
4 5 84

6 -84

5 6 48
2 4 -4

I I5 99
"I i 6 -84

C I 5 -99'16 124
* 5 6 -88

4 5 45

6 705 6 70

4 5 6 -30

The values for the normalized areas of the quadri-

j laterals (A,,) formed by omitting antennas ) and © are

given for i < j in Table 4.

1 1354°
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Table 4

Aij for Antenna Array of Fig. 31

i j Ai

1 2 118
3 154
4 154
5 172
6 1372

3 129
4 169

6 131
3 4 115

S 5 169
6 154

5 129
6 154

5 6 118

The values for the normalized areas of the six

pentagons of the array (Ai) formed by omitting antenna (

are given in Table 5.

Table 5

Ai for Antenna Array of Fig. 33'

, Ai

1 202
2 217
3 199
4 199
5 217
6 202
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Also, the normalized area of the entire array is

3 A = 247. (304)

Q4  Qs
T- Pand are given by the sum of the entries

in Tables 4 and 5, respectively. Tr is Sust A, which is3 247. Performing the calculations, one has

Q4= 2226 (305)I TP

-Q5 = 1236. (306)

Inequality (302) for n = 6 then becomes

1 3 1 3V l -I

orE .0o2 T .088 .093 .100. (308)

[ If one works with the three best equations (from the
tolerance point of view) of Eq. (273), one finds that they

f are given by the (i,j) pairs (3,6), (1,4) ,-end (1,6). Af'ter,

dividing each of the three equations by the greatest common

factor of its coefficients, the resulting equations are

61 - 62 + 54" = 0 (309)

5P2 - 593 + (5 6 65 s=o (310)

I 41t 2 -71 3 + 714 - 15 =0. (311)
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These three equations all have the same tolerance,

and the others all have smaller tolerance. So from the

definition of TV

( 3245. (

As before one uses 2 instead of = in Eq. (312) as

there may a priori be a set of equations which are linear

combinations of Eqs. (309)-(311) and which alow a larger
tolerance. As in the discussion preceding A. (236),

Eq. (312) may be an equality. The author has been unable

to find any better linear combinations for this array.

As in Eq. (240), a smaller uppef bound can be

obtained by observing that, from Eqs. (294) and (305) the I
largest of I, J, K cannot be smaller than 12, since I, J, K

are integers. So

T..o83. (313)

COMPARISON OF ARRAYS OF FIGS. 26 AND 31 1
If one carries over the concept of tolerance effi-

ciency as the ratio of T to the weakest (largest) upper

bound, as was introduced in the discussion succeeding
1

Eq. (269), and assumes that T is indeed 1 for the six22
antenna array (and not greater), one finds an efficiency of

62% for the five antenna array, and 45% for the six antenna
array.•

From Eqs. (236) and (312), both arrays have the

same sufficient tolerance.de

If 6-§. is defined as the ratio of the diameters of

the circles inscribing the six and five antenna arrays, one
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sees by comparing Eqs. (227) and (303) that if L = 2!! 1.87,

then the triangular array areas are the same. Roughly speak-

ing, if Le - 1.87, then the two arrays will have about the

same imamb iVous coverage in terms of a cone of source direc-

tions. If a- < 1.87, the six antenna array will have greater

unambiguous coverage than the five antenna array.

Concerning the efficiency numbers, it has been men-

tioned before that for more than four antennas, tolerance

efficiencies of 100% are undoubtedly not achievable, although

how close one can come is unknown. Also, tolerance efficiency

8is not the whole story as far as the relation between toler-

ance and ambiguity remoteness is concerned. Since the

13 tolerance efficiency is a function of T(P), which is an area,

it is a priori possible to have two arrays with the same

number of antennas such that the most efficient array actually

has the closest nearest ambiguity. The way this might happen

would be for the lattice points in one dimension of the TAAP

B of the more efficient array to be more widely spaced than

those of the other dimension.

1JConsider next the following problem: Assuming
T = is it possible to arrange five antennas more or less

p22'B uniformly around a circle with 8-inch diameter if*

= 1.75 sin p inches?I li
Three efficiencies are defined, all 1 1, as follows:

12T(P) sin2  (3)-! I? Ep =2:l (314)
2 X2

enclosed area (5
EA area of regular pentagon on same circle (315)

*p is the half-angle of the cone of unambiguous coverage.
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and

E is the tolerance efficiency just defined. EA is
a measure of the uniformity of distribution of the antennas

around the circle. E (Theorem I shows that Ep ! 1) is a

measure of achieving a good balance in the location of the

ambiguities in the array ambiguity plot.

Using the numbers assumed here, Eqs. (314)-(316)

become

= 2.26 T(P) (317)
enclosed area

A 38 (318)

1I
ET T ToP (319)

Eliminating T(P) and enclosed area from Eqs. (317)- 1
(319), one has EI

E = 53 (320)

(Pi
The array in Fig. 26 has an EA in excess of .98.

If one assumes that one would not want an EA any less than

,80, one has

EZ- (321)

or

Tp r
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Now E is less than unity, so practically one wouldP
undoubtedly be required to exceed 70% in tolerance efficiency.

This is considered by the author to be a very marginal situa-

tion, and the answer to the original question is undoubtedly

no unless one relaxes the restriction on EA2 which will

probably result in arrays which are undesirable for other

reasons.

For six antennas, Eq. (317) remains the same,

Eq. (318) becomes (using a regular hexagon for the denominator)

enclosed area
EA =" 41.6 (2)+

and Eq. (319) becomes

l 1 34 X__enclosed area)i EC9 O p (324)

Eliminating T(P), the equivalent of Eq. (320) is

S.035 (25)

or (2

The array of Fig. 31 has an EA in excess of .98, so

that practically, six antennas solves the problem with margin

to spare.

One can in fact show that the array of Fig. 26 will
solve the problem for a 6-inch diameter circle, and the array

of Fig. 31 will solve it for a 12-inch diameter circle.
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A SECO D EXAMPLE WITH SIX ANTENNAS

Consider the array in Fig. 33.

1 / -

- Is
- , ,i!

Fig.33 AN ARRAY

I
In Fig. 33, antennas (, (3j, (k), © are arranged

on a square, the ratio of the distance from Q to @ to the i
distance from (D to® is n, an integer >2, and the ratio
of the distance from (3 to @ to the distance from @ to

* ®~) is also n.

Omitting antenna (g) leaves a type 4 array of

Fig. 25. Proceeding as before, the Aijk's are given in

Table 6 for the case where n is odd.

All of the Aijk's in Table 6 are to be divided by

2 to give the Aifk'S for the even case.
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Table 6

Aijk for Antenna Array of Fig. 33 With n Odd

i j k Aijk

131 2 3 -n
4 -n(n-2)
5 n 2
6 -n

3 4 (n-1)(n-2)
Li I 5 -n(n-i)

6 n-2
4f 5 0
4 6 -(n-2)5 6 n

2 3 4 -n(n-1)

6 0
I, 5 _n2

6 n(n-1)
5 6. -n____2 _

3 4 5 n(n-1)!: I-~ 4 6 -(n-1)(n-2)5 6 1 n(n-2)

I~ 5i .J 6 n

For n odd, the Aij Is are given in Table 7. To obtain

the A ijs for n even, one divides the entries for Aij in
i Table 7 by 2.

For n odd, the Ai's are given in Table 8. To obtain

- n the Ai's for n even, divide the entries for A, in Table 8

by 2.

z143



THE J0 4No NOPKINS UNIVERSITY

APPLIED PHYSICS LABORATORY
S4LV20 S INo. MA ,YLAND

Table 7

A for Antenna Array of Fig. 33 With n Oddij

i j Ai

1 2 n
3 n(n-l)
4 n(n-2)

4

6 2(n-1)
2 3 n 2

4 2n(n-)
5 2n6

22

63 nn
3 4 2(n-1) 2

5 2n(n-l)6 n(n-2)

5 n2

6 n(n-1)

Table 8

A. for Antenna Array of Fig. 33 With n Odd

i Ai
1 n2
2 2n2
3 2n(n-1)
4 2n(n-1)
5 2n 2
6 n2
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I2
Finally, A = 2n2 for n odd andA = n2 for n even.

For n odd, inequalities (302) are

3, 3F1

n(3n_2 ) 2"n5n72) 2

For n even,

2n 2n(3n-2 n(sn-2) 4n • : ___ (328)

If one now lists the equations of (273) and selects

the best three (from the tolerance point of view), one finds

that they are (after dividing each equation through by the

greatest common factor of its coefficients):

P1 " P 3 
+ P4 " V 6 = 0 (329)

nV - (n-1) 3 - Ve = 0 (330)

V + (n-l),4 - np, = 0 (331)

for odd n. Actually, there are other choices for Eqs. (330)

and (331), but none has any larger tolerance than Eqs. (330)

t and (331). If one assumes, as previously conjectured, that

one cannot improve tolerancewise by any linear combination of

these equations, one then has, for n odd,

T 1 (332)

Note that for this case, Eqs. (330) and (331) are
p each one-dimensional cases, allowing resolution of non-array

ambiguities in two perpendicular directions individually.
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Equation (329) ties the two dimensions together, allowing

resolution of non-array ambiguities for any antenna pair.

For n even, one can improve slightly on Eqs. (330)

and (331). The best three equations in this case are:

V1 " V3 + K4 " V6 = o (333)

n (n-2) + (n-2) n (554)112 = 2 93 2 "I 4 = °  33s

(n-2 n n .(n-2)
2 I -1 +2 lPs 2 P 16 = 0. (335)

In this case, all other equations have a smaller
tolerance than Ecls. (334) and (335).

Again, if(oe makes the same assumption as made
after Eq. (331), od'e has

T a (336)

for n even.

Now suppose that one wished to compare the antenna

configurations of Figs. 31 and 33, assuming they have the
sametoleance The, since T,, = r-2, one has n = 11 or

n = 12. Suppose also that one assumes that the arrays of

Figs. 31 and 33 are constrained to lie on the same circle

(except for antennas ® and ® in Fig. 33, which will lie

in the interior).

I.
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Let P, and P. denote the array ambiguity plots of

• Figs. 31 and 33, respectively. Then

Area of Fig. 31 I T(P,)[ Area of Fig. 33 T(1) -1
2 2: n =l

p = ratio of A's for the two cases = (337)

2 _244_ ) n =

If d is the diameter of the circle, then

Area of Fig. 31 = (.0026)(247)d 2

Area of Fig. 33 0.5d2  (338)

So from Eqs. (337) and (338),

T (P ) 0 .8 , n = l3

T(7P) -  1.3, n 12•

One would therefore expect the nearest ambiguities

III to be farthest away for the n = 11 case of Fig. 33 as is the

case. The n = 12 case has the closest nearest ambiguities,

* [I and the array of Fig. 31 is in between. In this sense, the

n = 11 case of Fig. 33 is superior,

$ jj One should note however that some pairs of antennas

are much closer together in the Fig. 33 array than they are

in the Fig. 31 array. This could make a difference for other

reasons, for example mutual coupling.

In addition, if the two arrays were compared on the

basis of occupying the same area, the array of Fig. 31 would

be superior, although only slightly so for the n = 11 case

of the array of Fig. 33.
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The tolerance efficiency for the array of\Fig. 33

is computed to be 45% for n = 11 and 38% for n = 12. This

compares with 45% for the array of Fig. 31.i11
m ANTENNAS ON A LINE, m 2 3

Just as before, the one-dimensional problem for m ,
antennas is a special case of the two-dimensional problem for

m + 1 antennas. ]

Given m antennas on a line, one inserts a fictitious

antenna off the line, as in Fig. 34.

4 Ii

QdlQd2Q d3 Q d m.O

Fig. 34 m ANTENNAS ON A LINE

Lret the lengths of the m - 1 line segments be related 3
by~ ~~~~ d1 :d0..dip:~ .. :m (3140)3

where p,., p2p .9.1p m_ are integers with no factor in common.
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As before, the ratios of the areas of any pair of
triangles depend only on the ratios of corresponding line
segments along the base, since all triangles have the same

~altitude. Ht d Again, let R denote the ratio of the separation of

grid lines in the array ambiguity plot for the antennas Q,
L®, ... , ® to that for antennas © and

From the discussion in Section 2, it follows that

M.

j3R p (341)

The inequalities (302) carry over (as an established
theorem for m = 3, 4, 5 and as a conjecture for m k 6). The1proof for m = 5 is quite similar to the previous proofs for
m = 3 and 4, and is omitted.

Ignoring the intermediate inequalities, inequality
(302) in this case becomes

TC 9(342)

The tolerance efficiency is defined as

E( = T CP r- --)1 43)

a number not exceeding unity (a theorem for m = 3, 4) 5,

conjecture for m . 6). E = 1 for m = 3, and it is conje -

tured that it is strictly less than unity for m > 3. It s

not known how close one can approach it.

1149
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Consider the case where

JU
- = p , l ,2,..., rm-I (344)l i. U

p. where p is a positive integer > 1.

In this case3

y ~R = ' . .•(345)I

Equation (342) becomes I

2( "  M-11) q(M-2 )('- )

In this case one set of equations in the Vi's that I
one could use to resolve ambiguities other than array ambigu-

ities can be shown by the methods of Section 2 and this I
section to be

Rli"- ('+p)v i+1 + Vi+2 = 0, i = 1, 2, ... , (m-2). (347)

All of these equations have the same tolerance, so I
that (assuming a better set of equations is not obtainable

or this array) 1

j The tolerance efficiency: assuming the conjecture,
s given by . .. -

E ,P p- (349)J
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As m 0, E 2(rP) a rather interesting result

that illustrates that the tolerance ambiguity problem improves

exponentially by adding antennas at appropriate locations.

In addition, the smaller tolerance one can meet, the larger

one can make p, and therefore the fewer number of antennas

one needs to accomplish the same expansion factor of the

ambiguities.

Another interesting example is the following one.

In this case an attempt is made not to let the antennas get

too close to each other.

1Let p be a positive integer, and

m. --

13 = p (l+p)i, j = 1, 2, *..) m-l (550)

s = (P+)m- ,1m- 1 (351)

The equations for the Vi's can be taken to be

(l+p)"i-(l+P) tpi+1 +p i+ 2 = 0, i = 1, 2, ... , (m-2). (352)

All of these equations have the same tolerance, so

that (assuming one can find no better set of equations for

-this array)

~q=2(1+2p)
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The tolerance efficiency is then

E = 2(1+p)

which approaches + as m [ oo.
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